分析 (1)設(shè)直線l的方程為x=my+1,代入圓0:x2+y2=4,利用韋達(dá)定理,結(jié)合$\overrightarrow{BP}$=$\overrightarrow{BM}$+$\overrightarrow{BN}$求點(diǎn)P的軌跡方程:
(2)求出$\overrightarrow{BM}$•$\overrightarrow{BN}$,即可得到最大值與最小值.
解答 解:(1)設(shè)M(x1,y1),N(x2,y2),P(x,y),則
設(shè)直線l的方程為x=my+1,代入圓0:x2+y2=4,整理可得(1+m2)y2+2my-3=0,
∴y1+y2=-$\frac{2m}{1+{m}^{2}}$,y1y2=-$\frac{3}{1+{m}^{2}}$
∴x1+x2=$\frac{1-{m}^{2}}{1+{m}^{2}}$,
∵$\overrightarrow{BP}$=$\overrightarrow{BM}$+$\overrightarrow{BN}$,
∴(x+1,y)=(x1+1,y1)+(x2+1,y2),
∴x=x1+x2+1=$\frac{2}{1+{m}^{2}}$,y=y1+y2=-$\frac{2m}{1+{m}^{2}}$,
∴x2+y2=2x,即(x-1)2+y2=1;
(2)$\overrightarrow{BM}$•$\overrightarrow{BN}$=(x1+1,y1)•(x2+1,y2)=x1x2+(x1+x2)+1+y1y2=-$\frac{4{m}^{2}}{1+{m}^{2}}$,
∴m=0取得最大值0,無最小值.
點(diǎn)評(píng) 本題考查軌跡方程,考查直線與圓的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}<m<\frac{11}{8}$ | B. | $m<\frac{11}{8}$ | C. | $m>\frac{2}{3}$ | D. | $m<\frac{2}{3}$或$m>\frac{11}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一點(diǎn) | B. | 兩點(diǎn) | C. | 一條拋物線 | D. | 兩條拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [5,55] | B. | [5,50] | C. | [10,50] | D. | [10,55] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>-2 | B. | a≥-2 | C. | a>2 | D. | a≥2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com