12.函數(shù)f(x)=|lgx2|為( 。
A.奇函數(shù),在區(qū)間(1,+∞)上是減函數(shù)B.奇函數(shù),在區(qū)間(1,+∞)上是增函數(shù)
C.偶函數(shù),在區(qū)間(0,1)上是增函數(shù)D.偶函數(shù),在區(qū)間(0,1)上是減函數(shù).

分析 確定函數(shù)的定義域,利用函數(shù)的單調(diào)性、奇偶性,即可得出結(jié)論.

解答 解:由題意,函數(shù)的定義域為(-∞,0)∪(0,+∞),f(-x)=|lg(-x)2|=f(x),
∴f(x)是偶函數(shù),
在(0,1)上,f(x)=|lgx2|=-2lgx是減函數(shù),
故選:D.

點評 本題考查函數(shù)的單調(diào)性、奇偶性,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知圓柱OO1底面半徑為1,高為π,ABCD是圓柱的一個軸截面.動點M從點B出發(fā)沿著圓柱的側(cè)面到達點D,其距離最短時在側(cè)面留下的曲線Γ如圖所示.現(xiàn)將軸截面ABCD繞著軸OO1逆時針旋轉(zhuǎn)θ(0<θ≤π)后,邊B1C1與曲線Γ相交于點P,設(shè)BP的長度為f(θ),則y=f(θ)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列說法不正確的是( 。
A.如果一條直線上有兩個點在一個平面內(nèi),則直線在平面內(nèi)
B.經(jīng)過兩條相交直線有且只有一個平面
C.不共線的三個點可以確定一個平面
D.兩個平面可以相交于一個點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知等比數(shù)列的首項為a1公比為q,則其通項公式為${a}_{n}={a}_{1}{q}^{n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}滿足a1=1,(n+1)an+1=nan,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{{2}^{n}}{{a}_{n}}$,數(shù)列{bn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},(x≤0)}\\{-{x}^{\frac{1}{2}},x>0}\end{array}\right.$.
(1)作出它的圖象;
(2)指出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,三棱柱ABC-A1B1C1中,E,F(xiàn)分別是A1B1,A1C1的中點.截面BCFE將三棱柱分成兩部分,你能說出多面體A1EF-ABC是什么樣的幾何體嗎?多面體B1C1FE-BC是簡單幾何體還是組合體?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.有些航空母艦上裝有幫助飛機起飛的彈射系統(tǒng),一已知某型號的戰(zhàn)斗機在跑道上加速時可能產(chǎn)生的最大加速度為5.0m/s2,當(dāng)飛機的速度達到50m/s時才能離開航空母艦起飛,設(shè)航空母艦處于靜止?fàn)顟B(tài).問:
(1)若要求該飛機滑行160m后起飛,彈射系統(tǒng)必須使飛機具有多大的初速度?
(2)若某艦上不裝彈射系統(tǒng),要求該種飛機仍能此艦上正常起飛,問該艦身長至少應(yīng)為多長?
(3)若航空母艦上不裝彈射系統(tǒng),設(shè)航空母艦甲板長為L=160m,為使飛機仍能從此艦上正常起飛,這時可以先讓航空母艦沿飛機起飛方向以某一速度勻速航行,則這個速度至少為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知sinα-cosα=$\frac{17}{13}$,α∈(0,π),求sinαcosα的值.

查看答案和解析>>

同步練習(xí)冊答案