3.已知方程x2-(bcosA)x+acosB=0的兩根之積等于兩根之和,且a,b為△ABC的兩邊,A,B為兩內(nèi)角,則△ABC的形狀為等腰三角形.

分析 由題意可得bcosA=acosB,
由正弦定理和已知條件可得A=B,即得三角形為等腰△.

解答 解:方程x2-(bcosA)x+acosB=0的兩根之積等于兩根之和,
∴bcosA=acosB,
由正弦定理可得sinBcosA=sinAcosB,
∴sinBcosA-sinAcosB=0,
即sin(A-B)=0,
∵A、B為三角形的兩內(nèi)角,
∴A=B,
∴三角形為等腰三角形.
故答案為:等腰三角形.

點評 本題考查了三角形形狀的判定問題,利用正弦定理與兩角差的三角函數(shù)公式即可求解,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,在菱形ABCD中,M為AC與BD的交點,∠BAD=$\frac{π}{3}$,AB=3,將△CBD沿BD折起到△C1BD的位置,若點A,B,D,C1都在球O的球面上,且球O的表面積為16π,則直線C1M與平面ABD所成角的正弦值為$\frac{4\sqrt{3}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知a=bcosC+csinB,則B=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)列{an}滿足a1=3,Sn=nan-n(n-1)
(Ⅰ) 求數(shù)列{an}的通項公式an
(Ⅱ)令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)$f(x)=\frac{x}{e^x}$的單調(diào)遞減區(qū)間是( 。
A.(-∞,1)B.(0,+∞)C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)f(x)為定義在R上的奇函數(shù),且滿足f(x)=f(x+4),f(1)=1,則f(-1)+f(8)=( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x2+aln(x+1)
(1)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調(diào)增函數(shù),求實數(shù)a的取值范圍
(2)若函數(shù)y=f(x)有兩個極值點x1,x2,求證:$0<\frac{{f({x_2})}}{x_1}<-\frac{1}{2}+ln2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線x+(b-2)y+1=0與直線a2x+(b+2)y+3=0互相垂直,a,b∈R,則ab的最大值為(  )
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}lo{g_2}({5-x}),x≤1\\ f({x-1})+1,x>1\end{array}\right.$,則f(2 016)=( 。
A.2017B.2015C.2018D.2016

查看答案和解析>>

同步練習(xí)冊答案