18.若x>0,y>0,x+2y+2xy=8,則x+2y的最小值是(  )
A.$\frac{11}{2}$B.3C.$\frac{9}{2}$D.4

分析 首先分析題目由已知x>0,y>0,x+2y+2xy=8,求x+2y的最小值,猜想到基本不等式的用法,利用a+b≥2$\sqrt{ab}$ 代入已知條件,化簡為函數(shù)求最值

解答 解:考察基本不等式x+2y=8-x•(2y)≥8-($\frac{x+2y}{2}$)2(當(dāng)且僅當(dāng)x=2y時(shí)取等號)
整理得(x+2y)2+4(x+2y)-32≥0
即(x+2y-4)(x+2y+8)≥0,又x+2y>0,
所以x+2y≥4(當(dāng)且僅當(dāng)x=2y時(shí)取等號),
則x+2y的最小值是 4,
故選:D.

點(diǎn)評 本題主要考查基本不等式的用法,對于不等式a+b≥2$\sqrt{ab}$在求最大值最小值的問題中應(yīng)用非常廣泛,需要同學(xué)們多加注意,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知角θ的終邊過點(diǎn)(4,-3),則cos(π-θ)=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),對?x∈R,f(-x)+f(x)=x2,且在(0,+∞)上,f′(x)>x.若有f(2-a)-f(a)≥2-2a,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,1]B.[1,+∞)C.(-∞,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,且|2$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{13}$,則向量$\overrightarrow{a}$在向量$\overrightarrow$方向上的投影為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足a1=$\frac{1}{4}$,a2=$\frac{3}{4}$,2an=an+1+an-1(n≥2,n∈N*),數(shù)列{bn}滿足b1=1,3bn-bn-1=n(n≥2,n∈N*),數(shù)列{bn}的前n項(xiàng)和為Sn
(1)求證:數(shù)列{bn-an}為等比數(shù)列;
(2)求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若拋物線x2=12y與雙曲線$\frac{x^2}{k}+\frac{y^2}{5}=1$有相同的焦點(diǎn),則雙曲線的離心率為$\frac{{3\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某幾何體的三視圖如圖所示,其中俯視圖為半徑為2的四分之一個(gè)圓弧,則該幾何體的體積為8-2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知全集U={1,2,3,4,5,6,7},A={l,2,3},B={2,5,7},則集合M∩(∁UB)=( 。
A.{1}B.{2}C.{1,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,既是奇函數(shù)又存在極值的函數(shù)是( 。
A.y=x3B.$y=x+\frac{1}{x}$C.y=x•e-xD.y=ln(-x)

查看答案和解析>>

同步練習(xí)冊答案