分析 (1)設(shè)出切點(diǎn),求得切線的方程,代入拋物線的方程,由相切的條件:判別式為0,解方程可得p,進(jìn)而得到所求拋物線的方程;
(2)先設(shè)直線方程和點(diǎn)的坐標(biāo),聯(lián)立直線與拋物線的方程得到一個(gè)一元二次方程,再利用韋達(dá)定理及→OA•→OB=6消元,最后可得定點(diǎn)坐標(biāo),再由△ABO面積S=12•2√3•|y1-y2|,化簡(jiǎn)整理,即可得到所求最小值.
解答 解:(1)設(shè)切點(diǎn)為(√3,n),且n2=2√3p,
由題意可得切線方程為y-n=12(x-√3),
聯(lián)立拋物線的方程y2=2px,消去x,可得
y2-4py+4pn-2√3p=0,
由相切的條件可得16p2-4(4pn-2√3p)=0,
解方程可得p=√32,
即有拋物線的方程為y2=√3x;
(2)設(shè)直線AB的方程為:x=ty+m,點(diǎn)A(x1,y1),B(x2,y2),
直線AB與x軸的交點(diǎn)為M(m,0),
x=ty+m代入y2=√3x,
可得y2-√3ty-√3m=0,
根據(jù)韋達(dá)定理有y1•y2=-√3m,y1+y2=-√3t,
∵→OA•→OB=6,
∴x1•x2+y1•y2=6,
從而13(y1•y2)2+y1•y2-6=0,
∵點(diǎn)A,B位于x軸的兩側(cè),
∴y1•y2=-6,故m=2√3.
故直線AB所過(guò)的定點(diǎn)坐標(biāo)是(2√3,0),
即有△ABO面積S=12•2√3•|y1-y2|=√3•√(y1+y2)2−4y1y2
=√3•√3t2+24≥6√2,
當(dāng)t=0時(shí),即直線AB垂直于x軸,
△AOB的面積取得最小值,且為6√2.
點(diǎn)評(píng) 本題考查拋物線的方程的求法,注意運(yùn)用直線和拋物線相切的條件,考查三角形的面積的最值,注意求出直線恒過(guò)定點(diǎn),運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,+∞) | B. | (0,32) | C. | (0,12) | D. | (12,32) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com