分析 (Ⅰ)證明B,C,T,F(xiàn)四點(diǎn)共圓,可得∠CBT=∠CFT;
(Ⅱ)延長EF與ABM交于P,利用△PBF∽△PTC,△PAE∽△PTC,結(jié)合切割線定理,即可證明CT2=AE•BF.
解答 證明:(Ⅰ)∵OT⊥EF,BF⊥AB,∠CTF=∠CBF=90°,
∴∠CTF+∠CBF=180°,
∴B,C,T,F(xiàn)四點(diǎn)共圓,
∴∠CBT=∠CFT;
(Ⅱ)延長EF與ABM交于P,則△PBF∽△PTC,
∴$\frac{PB}{PT}$=$\frac{BF}{CT}$①,
△PAE∽△PTC,∴$\frac{PA}{PT}$=$\frac{AE}{CT}$②
①×②$\frac{PA•PB}{P{T}^{2}}$=$\frac{AE•BF}{C{T}^{2}}$
由切割線定理可得PT2=PA•PB,
∴CT2=AE•BF.
點(diǎn)評 本題考查切割線定理的運(yùn)用,考查三角形相似的性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 動點(diǎn)A′在平面ABC上的射影在線段AF上 | |
B. | 恒有DE⊥平面A′GF | |
C. | 三棱錐A′-FED的體積有最大值 | |
D. | 異面直線A′E與BD不可能垂直 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com