4.設(shè)數(shù)列{an}是單調(diào)遞增的等差數(shù)列,前三項的和為6,a4=8,則它的首項是(  )
A.-2B.-1C.1D.2

分析 依題意,設(shè)其公差為d,則d>0;利用等差數(shù)列的性質(zhì)易知a2=2,由a4=2+2d=8可求得d,從而可得答案.

解答 解:∵數(shù)列{an}是單調(diào)遞增的等差數(shù)列,前三項的和為6,
∴3a2=6,解得a2=2,
設(shè)其公差為d,則d>0.
∴a1=2-d,a4=2+2d=8,
∴d=3,a1=2-3=-1,
故選:B.

點評 本題考查等差數(shù)列的性質(zhì),求得a2=2與d=3是關(guān)鍵,考查方程思想與運(yùn)算求解能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合U={x|x≤3},集合M={x|$\frac{1}{x}$<0},則∁UM=( 。
A.{x|x<0}B.{x|x≥0}C.{x|0≤x≤3}D.{x|0<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.給出下列結(jié)論.
①若y=$\frac{1}{{x}^{3}}$,則y′=-$\frac{3}{{x}^{4}}$;
②若y=$\sqrt{x}$,則y′=$\frac{1}{2\sqrt{x}}$;
③若y=2x,則y′=2x;
④若f(x)=logax(a>0且a≠1),則f′(x)=$\frac{lo{g}_{a}e}{x}$,其中正確的有(  )
A.①②B.①②③C.②③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在平面直角坐標(biāo)系xoy中,已知直線l:x+y+a=0與點A(0,2),若直線l上存在點M滿足|MA|2+|MO|2=10(O為坐標(biāo)原點),則實數(shù)a的取值范圍是( 。
A.(-$\sqrt{5}$-1,$\sqrt{5}$-1)B.[-$\sqrt{5}$-1,$\sqrt{5}$-1]C.(-2$\sqrt{2}$-1,2$\sqrt{2}$-1)D.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知{an}是遞增的等差數(shù)列,a2+a5=16,且a2-1,a4-1,a7+1成等比數(shù)列.
(1)求an;
(2)若{an}的前n項和為Sn,證明:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)M,N是拋物線C:y2=2px(p>0)上任意兩點,點E的坐標(biāo)為(-λ,0)(λ≥0),若$\overrightarrow{EM}$•$\overrightarrow{EN}$的最小值為0,則λ=( 。
A.0B.$\frac{p}{2}$C.pD.2p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$,曲線C2的極坐標(biāo)方程ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$.
(1)將曲線C1和C2化為普通方程;
(2)設(shè)C1和C2的交點分別為A,B,求線段AB的中垂線的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知,如圖,在⊙O中,弦BA,CD延長線交于E點,EG與⊙O切于G點,AD延長線交EG于點F,且EF=FG.求證:EF∥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若直線(1+a)x+y+1=0與直線2x+ay+2=0平行,則a的值為1或-2.

查看答案和解析>>

同步練習(xí)冊答案