9.設(shè)M,N是拋物線C:y2=2px(p>0)上任意兩點(diǎn),點(diǎn)E的坐標(biāo)為(-λ,0)(λ≥0),若$\overrightarrow{EM}$•$\overrightarrow{EN}$的最小值為0,則λ=( 。
A.0B.$\frac{p}{2}$C.pD.2p

分析 利用數(shù)量積公式,結(jié)合配方法、$\overrightarrow{EM}$$•\overrightarrow{EN}$的最小值為0,即可求出λ.

解答 解:設(shè)M(x1,y1),N(x2,y2),則
$\overrightarrow{EM}$$•\overrightarrow{EN}$=(x1+λ,y1)•(x2+λ,y2)=x1x2+λ(x1+x2)+λ2+y1y2=$(\frac{{y}_{1}{y}_{2}+2{p}^{2}}{2p})^{2}$+λ•$\frac{{{y}_{1}}^{2}+{{y}_{2}}^{2}}{2p}$+λ2-p2,
∵$\overrightarrow{EM}$$•\overrightarrow{EN}$的最小值為0,
∴λ=$\frac{p}{2}$.
故選:B.

點(diǎn)評 本題考查拋物線的方程,考查數(shù)量積公式,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x-1)=ln$\frac{x}{x-2}$.若f(g(x))=lnx,則g(x)=( 。
A.$\frac{x-1}{x+1}$B.$\frac{x+1}{x-1}$C.$\frac{1-x}{1+x}$D.$\frac{1+x}{1-x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=sin(-2x)的單凋減區(qū)間是(  )
A.[$\frac{π}{2}$+2kπ,$\frac{3π}{2}$+2kπ],k∈ZB.[$\frac{π}{2}$+2kπ,$\frac{3π}{4}$+2kπ],k∈Z
C.[π+2kπ,3π+2kπ],k∈ZD.[-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=log${\;}_{\frac{1}{2}}$|cosx|的定義域是{x|x≠kπ+$\frac{π}{2}$,k∈z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)數(shù)列{an}是單調(diào)遞增的等差數(shù)列,前三項(xiàng)的和為6,a4=8,則它的首項(xiàng)是( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)向量$\overrightarrow{a}$=(1,k),$\overrightarrow$=(x,y),記$\overrightarrow{a}$與$\overrightarrow$的夾角為θ.若對所有滿足不等式|x-2|≤y≤1的x,y,都有θ∈(0,$\frac{π}{2}$),則實(shí)數(shù)k的取值范圍是( 。
A.(-1,+∞)B.(-1,0)∪(0,+∞)C.(1,+∞)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{{x}^{2}+a}{x}$(a>0).
(1)判斷并證明函數(shù)f(x)在($\sqrt{a}$,+∞)單調(diào)性;
(2)若a=2,當(dāng)x∈[1,4]時,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知p:“x>2”,q:“x2>4”,則p是q的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列各式的值為$\frac{1}{4}$的是( 。
A.sin15°cos15°B.1-2sin275°
C.$\frac{{2tan{{22.5}°}}}{{1-{{tan}^2}{{22.5}°}}}$D.$2{cos^2}\frac{π}{12}-1$

查看答案和解析>>

同步練習(xí)冊答案