A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 設(shè)P(x0,y0),由${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}=-7$和P(x0,y0)為橢圓上任意一點(diǎn),列出方程組,能求出使得${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}=-7$成立的P點(diǎn)的個(gè)數(shù).
解答 解:設(shè)P(x0,y0),
∵F1,F(xiàn)2分別為橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$的左右兩個(gè)焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),
∴F1(-4,0),F(xiàn)2(4,0),
$\overrightarrow{P{F}_{1}}$=(-4-x0,-y0),$\overrightarrow{P{F}_{2}}$=(4-x0,-y0),
∵${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}=-7$,∴(-4-x0)(4-x0)+(-y0)2=-7,即${{x}_{0}}^{2}+{{y}_{0}}^{2}$=9,①
又∵設(shè)P(x0,y0)為橢圓上任意一點(diǎn),∴$\frac{{{x}_{0}}^{2}}{25}+\frac{{{y}_{0}}^{2}}{9}=1$,②
聯(lián)立①②,得:$\left\{\begin{array}{l}{{x}_{0}=0}\\{{y}_{0}=3}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{0}=0}\\{{y}_{0}=-3}\end{array}\right.$,
∴使得${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}=-7$成立的P點(diǎn)的個(gè)數(shù)為2個(gè).
故選:C.
點(diǎn)評 本題考查滿足條件的點(diǎn)的個(gè)數(shù)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}x=tant\\ y=\frac{1+cos2t}{1-cos2t}\end{array}$ | B. | $\left\{\begin{array}{l}x=tant\\ y=\frac{1-cos2t}{1+cos2t}\end{array}$ | ||
C. | $\left\{\begin{array}{l}{x=|t|}\\{y={t}^{2}}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=cost}\\{y=co{s}_{\;}^{2}t}\end{array}\right.$. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com