2.拋物線y2=2x上兩點(diǎn)A,B,已知AB的中點(diǎn)在直線x=2上,F(xiàn)為拋物線焦點(diǎn),則|AF|+|BF|=( 。
A.3B.4C.5D.6

分析 求出準(zhǔn)線方程,利用拋物線的定義及AB的中點(diǎn)在直線x=2上,求得結(jié)果.

解答 解:拋物線y2=2x的準(zhǔn)線方程為x=-$\frac{1}{2}$,
設(shè)A(x1,y1),B(x2,y2),
∴|AF|+|BF|=x1+$\frac{1}{2}$+x2+$\frac{1}{2}$=x1+x2+1
∵AB的中點(diǎn)在直線x=2上,∴x1+x2=4,
∴|AF|+|BF|=5,
故選:C.

點(diǎn)評 本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,利用拋物線的定義得到|AF|+|BF|=x1+$\frac{1}{2}$+x2+$\frac{1}{2}$=x1+x2+1是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求定積分${∫}_{-1}^{0}$$\frac{{x}^{2}}{{x}^{2}+2x}$dx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點(diǎn)為F1(-$\sqrt{3}$,0),且過點(diǎn)E($\sqrt{3}$,$\frac{1}{2}$),設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,點(diǎn)P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2分別交x軸于點(diǎn)M,N.
(1)求橢圓C的方程;
(2)若直線PA1的斜率與直線PA2的斜率之和為1,求點(diǎn)M的坐標(biāo);
(3)求OM•ON的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸長為2,離心率為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過點(diǎn)M(2,0)的直線l與橢圓C相交于A,B兩點(diǎn),F(xiàn)1為橢圓的左焦點(diǎn).
(1)若B點(diǎn)關(guān)于x軸的對稱點(diǎn)是N,證明:直線AN恒過一定點(diǎn);
(2)試求橢圓C上是否存在點(diǎn)P,使F1APB為平行四邊形?若存在,求出F1APB的面積,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知拋物線C:x2=4y的焦點(diǎn)為F,準(zhǔn)線為l,P是l上一點(diǎn),Q是直線PF與拋物線C的一個交點(diǎn),若$\overrightarrow{PF}=4\overrightarrow{QF}$,則|QF|=( 。
A.$\frac{3}{4}$B.$\frac{3}{2}$C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若關(guān)于x的方程|x4-x3|=ax在R上存在4個不同的實(shí)根,則實(shí)數(shù)a的取值范圍為(  )
A.$({0,\frac{4}{27}})$B.$({0,\frac{4}{27}}]$C.$({\frac{4}{27},\frac{2}{3}})$D.$({\frac{4}{27},\frac{2}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)F1,F(xiàn)2分別為橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$的左右兩個焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),則使得${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}=-7$成立的P點(diǎn)的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a,b,c大于0,則3個數(shù):$a+\frac{1}$+1,$b+\frac{1}{c}$+1,$c+\frac{1}{a}$+1的值( 。
A.都大于3B.至多有一個不大于3
C.都小于3D.至少有一個不小于3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,設(shè)橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,過焦點(diǎn)F1的直線交橢圓于A(x1,y1),B(x2,y2)兩點(diǎn),若△ABF2的內(nèi)切圓的面積為π,則|y1-y2|=3.

查看答案和解析>>

同步練習(xí)冊答案