10.已知曲線y=(1-x)xn(n∈N*)在點(2,-2n)處的切線的縱截距為bn,則數(shù)列{bn}的通項公式是(n+1)•2n

分析 求出導(dǎo)數(shù),求得切線的斜率,再由兩點的斜率公式,計算即可得到所求數(shù)列的通項公式.

解答 解:y=(1-x)xn(n的導(dǎo)數(shù)為
y′=-xn+n(1-x)xn-1,
即有在點(2,-2n)處的切線的斜率為
k=-2n+n(1-2)•2n-1=-(n+2)•2n-1,
由題意可得$\frac{_{n}+{2}^{n}}{0-2}$=-(n+2)•2n-1,
解得bn=(n+1)•2n
故答案為:(n+1)•2n

點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率,同時考查兩點的斜率公式的運用,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.曲線$y=\frac{-2}{x+2}+1在點(-1,-1)$處的切線方程為( 。
A.y=2x+1B.y=2x-1C.y=-2x-3D.y=-2x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個俯視圖為正方形的幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.2B.$\frac{4}{3}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l1:ax-y+a=0,l2:(2a-3)x+ay-a=0.
(1)若l1∥l2,求a的值;
(2)若l1⊥l2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.以下四個命題中正確的個數(shù)是1.
①命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”;
②函數(shù)f(x)=$\frac{1}{x}$在其定義域上為減函數(shù);
③存在正實數(shù)a,b,使得lg(a+b)=lga+lgb;
④在△ABC中,A<B是sinA<sinB的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義符號函數(shù):sgn(x)=$\left\{\begin{array}{l}{-1,x<0}\\{0,x=0}\\{1,x>0}\end{array}\right.$則函數(shù)f(x)=x•sgn(1nx)與函數(shù)g(x)=x4-x2的圖象的交點個數(shù)為( 。
A.,1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)=|1-x2|,若-1<a<0,b>1且f(a)=f(b),則$\frac{a-1}$的取值范圍( 。
A.(-$\sqrt{2}$,-1)B.(-∞,-$\frac{1}{2}$)C.(-$\sqrt{2}$,-$\frac{1}{2}$)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知${C}_{n}^{3}$=${A}_{n}^{2}$,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,已知正三棱錐P-ABC中,底面是正三角形,P在底面內(nèi)的射影是正三角形的中心.若AB=1,側(cè)面和底面所成的角是60°,則此棱錐的表面積是( 。
A.$\frac{3\sqrt{3}}{4}$B.$\frac{5\sqrt{3}}{4}$C.$\frac{1}{4}$+$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$+$\frac{\sqrt{3}}{4}$

查看答案和解析>>

同步練習(xí)冊答案