分析 利用兩角和差的正弦公式進(jìn)行化簡求解即可.
解答 解:∵$\frac{3π}{4}$+β-($\frac{π}{4}$-α)=$\frac{π}{2}$+α+β,
∴α+β=$\frac{3π}{4}$+β-($\frac{π}{4}$-α)-$\frac{π}{2}$,
即sin(α+β)=sin[($\frac{3π}{4}$+β)-($\frac{π}{4}$-α)-$\frac{π}{2}$]=-cos[($\frac{3π}{4}$+β)-($\frac{π}{4}$-α)]=-cos($\frac{3π}{4}$+β)cos($\frac{π}{4}$-α)-sin($\frac{3π}{4}$+β)sin($\frac{π}{4}$-α),
∵0<β<$\frac{π}{4}$<α<$\frac{3π}{4}$,
∴-$\frac{3π}{4}$<-α<-$\frac{π}{4}$,
則-$\frac{π}{2}$<$\frac{π}{4}$-α<0,則∵cos($\frac{π}{4}$-α)=$\frac{3}{5}$,∴sin($\frac{π}{4}$-α)=-$\frac{4}{5}$,
又$\frac{3π}{4}$<$\frac{3π}{4}$+β<π,
則cos($\frac{3π}{4}$+β)=-$\frac{12}{13}$,
則sin(α+β)=-cos($\frac{3π}{4}$+β)cos($\frac{π}{4}$-α)-sin($\frac{3π}{4}$+β)sin($\frac{π}{4}$-α)=$\frac{12}{13}$×$\frac{3}{5}$-$\frac{5}{13}$×(-$\frac{4}{5}$)=$\frac{56}{65}$.
點(diǎn)評 本題主要考查三角函數(shù)值的化簡和計(jì)算,利用兩角和差的正弦公式以及拆角計(jì)算是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 10 | C. | 2$\sqrt{2}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 90° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | $-\frac{2}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com