10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4,(-1≤x<0)}\\{sinπx,(x>0)}\end{array}\right.$且f(x)-ax≥-1對于定域內(nèi)的任意的x恒成立,則a的取值范圍是-6≤a≤0.

分析 利用轉(zhuǎn)化法不等式化為f(x)+1≥ax,再分類討論分段函數(shù)對應(yīng)的解析式,從而求出實數(shù)a的取值范圍.

解答 解:由f(x)-ax≥-1得f(x)+1≥ax,
當x>0時,不等式等價為sinπx+1≥ax,
∵當x>0時,sinπx+1≥0,
而y=ax過原點,∴此時則a≤0,
當-1≤x<0時,不等式的等價為x2+5≥ax,
即$\frac{{x}^{2}+5}{x}$≤a,
即x+$\frac{5}{x}$≤a恒成立,
設(shè)g(x)=x+$\frac{5}{x}$,則g′(x)=1-$\frac{5}{{x}^{2}}$=$\frac{{x}^{2}-5}{{x}^{2}}$,
當-1≤x<0時,g′(x)<0,即函數(shù)g(x)為減函數(shù),
則g(x)≤g(-1)=-1-5=-6,
即a≥-6;
綜上,a的取值范圍是-6≤a≤0.
故答案為:-6≤a≤0.

點評 本題主要考查不等式恒成立問題,利用參數(shù)分離法結(jié)合分類討論轉(zhuǎn)化為求函數(shù)的最值是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}的各項均不為0,其前n項和為Sn,且滿足a1=a,2Sn=anan+1
(1)求a2的值;
(2)求證{a2n}是等差數(shù)列;
(3)若a=-9,求數(shù)列{an}的通項公式an,并求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.射手張強在一次射擊中射中10環(huán)、9環(huán)、8環(huán)、7環(huán)、7環(huán)以下的概率分別是0.24、0.28、0.19、0.16、0.13.計算這個射手在一次射擊中:
(1)射中10環(huán)或9環(huán)的概率;
(2)至少射中7環(huán)的概率;
(3)射中環(huán)數(shù)小于8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.指數(shù)函數(shù)f(x)=(2-a)x是單調(diào)函數(shù),則a的取值范圍是(  )
A.(1,2)∪(-∞,1)B.(1,2)C.(-∞,1)D.(1,2)∪(-∞,1)∪(-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知z1=sinθ-$\frac{4}{5}$i,z2=$\frac{3}{5}$-cosθi,若z1-z2是純虛數(shù),則tanθ=( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)p:x<-3或x>1,q:x<-2或x>1,則¬p是¬q的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.淮南二中體育教研組為研究學生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對本校200名高二學生的課外體育鍛煉平均每天運動的時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉的時間(分鐘)[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)
總?cè)藬?shù)203644504010
將學生日均課外體育運動時間在[40,60)上的學生評價為“課外體育達標”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關(guān)?
課外體育不達標課外體育達標合計
15110
合計
(2)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該校高三學生中,抽取3名學生,記被抽取的3名學生中的:“課外體育達標”學生人數(shù)為X,若每次抽取的結(jié)果是相互獨立的,求X的數(shù)學期望和方差.
參考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)命題p:?x∈R,x2>lnx,則¬p為( 。
A.?x0∈R,x02>lnx0B.?x∈R,x2≤lnxC.?x0∈R,x02≤lnx0D.?x∈R,x2<lnx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=x2+bx+c的兩個零點為1,3.
(1)求b,c;
(2)當x∈[1,4]時,求f(x)的值域.

查看答案和解析>>

同步練習冊答案