4.設(shè)公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn.若S3=a22,且S1,S2,S4成等比數(shù)列,則a10等于19.

分析 設(shè)等差數(shù)列{an}的公差為d(d≠0),由等比數(shù)列的中項(xiàng)的性質(zhì),運(yùn)用等差數(shù)列的求和公式,可得d=2a1,再由S3=a22,運(yùn)用等差數(shù)列的通項(xiàng)公式和求和公式,解方程可得首項(xiàng)和公差,進(jìn)而得到所求值.

解答 解:設(shè)等差數(shù)列{an}的公差為d(d≠0),
由S1,S2,S4成等比數(shù)列,可得:
S22=S1S4,即有(2a1+d)2=a1(4a1+6d),
可得d=2a1,
由S3=a22,可得3a1+3d=(a1+d)2,
即有9a1=9a12,
解得a1=1,d=2,
即有a10=a1+9d=1+9×2=19.
故答案為:19.

點(diǎn)評 本題考查等差數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查等比數(shù)列的中項(xiàng)的性質(zhì),運(yùn)算化簡能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+2y≤8}\\{2x+y≤8}\\{x≥0}\\{y≥0}\end{array}\right.$ 則目標(biāo)函數(shù)z=6x+2y-1的最大值為( 。
A.17B.20C.21D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.根據(jù)如下樣本數(shù)據(jù)
x014m3
ym3m+57
求得y關(guān)于x的線性回歸直線方程為$\widehat{y}$=2.1x+0.85,則m的值為0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)f(x)=ax+3-|2x-1|.
(Ⅰ)若a=1,解不等式f(x)≤2;
(Ⅱ)若函數(shù)有最大值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.等比數(shù)列{an}的公比為q,前n項(xiàng)積為Tn,且滿足a1>1,a2015•a2016>1,(a2015-1)(a2016-1)<0,給出以下四個命題:①q>1;②a2015•a2017<1;③T2015為Tn的最大值;④使Tn>1成立的最大的正整數(shù)4031,則其中正確的命題序號為②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若集合A={0,1,2,4},B={1,2,3},則A∪B=( 。
A.{1,2}B.{0,3,4}C.{0,1,2,3,4}D.{0,1,1,2,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,且a=1,b=2,c=$\sqrt{7}$,則∠C=( 。
A.120°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列式子恒成立的是( 。
A.sin(α+β)=sinα+sinβB.cos(α-β)=cosαcosβ+sinαsinβ
C.sin(α-β)=cosαcosβ-sinαsinβD.cos(α+β)=cosαsinβ-sinαcosβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.cos420°+sin330°等于( 。
A.1B.-1C.$\frac{1}{2}$D.0

查看答案和解析>>

同步練習(xí)冊答案