分析 由已知可求AB,BC,從而可求sin∠ABD,cos∠CBD,cos∠ABD,sin∠CBD,由兩角和的正弦函數(shù)公式即可得解.
解答 解:∵如圖,可得:AB=$\sqrt{10}$,BC=$\sqrt{5}$
∴sin∠ABD=$\frac{1}{\sqrt{10}}$,cos∠CBD=$\frac{2}{\sqrt{5}}$,cos∠ABD=$\frac{3}{\sqrt{10}}$,sin∠CBD=$\frac{1}{\sqrt{5}}$,
∴sin∠ABC=sin(∠ABD+∠CBD)=sin∠ABDcos∠CBD+cos∠ABDsin∠CBD=$\frac{1}{\sqrt{10}}×\frac{2}{\sqrt{5}}+\frac{3}{\sqrt{10}}×\frac{1}{\sqrt{5}}$=$\frac{\sqrt{2}}{2}$,
故答案為:$\frac{\sqrt{2}}{2}$
點(diǎn)評 本題主要考查了兩角和的正弦函數(shù)公式的應(yīng)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | n≤2014 | B. | n≤2015 | C. | n>2014 | D. | n>2015 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | $\frac{{8\sqrt{3}}}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -5 | B. | 5 | C. | -$\frac{3}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com