1.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A是過(guò)F2且傾斜角為$\frac{π}{4}$的直線與雙曲線的一個(gè)交點(diǎn),若△F1F2A為等腰直角三角形,則雙曲線的離心率為( 。
A.$\frac{\sqrt{3}+1}{2}$B.$\sqrt{3}+1$C.$\frac{\sqrt{2}+1}{2}$D.$\sqrt{2}+1$

分析 設(shè)點(diǎn)A是過(guò)F2且傾斜角為$\frac{π}{4}$的直線與雙曲線的一個(gè)交點(diǎn),由△F1F2A為等腰直角三角形,可得A在雙曲線的左支,且AF1⊥x軸,|AF1|=|F1F2|,令x=-c,求得A的縱坐標(biāo),可得2c=$\frac{^{2}}{a}$,由離心率公式計(jì)算即可得到所求值.

解答 解:設(shè)點(diǎn)A是過(guò)F2且傾斜角為$\frac{π}{4}$的直線與雙曲線的一個(gè)交點(diǎn),
由△F1F2A為等腰直角三角形,可得A在雙曲線的左支,
且AF1⊥x軸,|AF1|=|F1F2|,
令x=-c,可得y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{^{2}}{a}$,
可得2c=$\frac{^{2}}{a}$,即b2=c2-a2=2ac,
由e=$\frac{c}{a}$,可得e2-2e-1=0,
解得e=1+$\sqrt{2}$(1-$\sqrt{2}$舍去).
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用等腰直角三角形的定義,結(jié)合離心率公式,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=3x${\;}^{\frac{2}{3}}$的值域是[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在復(fù)數(shù)范圍內(nèi),純虛數(shù)i的三個(gè)立方根為-i,$-\frac{\sqrt{3}}{2}+\frac{i}{2}$,$\frac{\sqrt{3}}{2}+\frac{i}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=|sinx|•cosx,給出下列五個(gè)結(jié)論:
①f($\frac{2014π}{3}$)=-$\frac{\sqrt{3}}{4}$;
②若|f(x1)|=|f(x2)|,則x1=x2+kπ(k∈Z);
③f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上單調(diào)遞增;
④函數(shù)f(x)的周期為π;
⑤f(x)的圖象關(guān)于點(diǎn)($\frac{π}{2}$,0)成中心對(duì)稱(chēng)
其中正確的結(jié)論是①⑤(寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知O,A,B,C,P在同一平面上,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,其中$\overrightarrow{a}$,$\overrightarrow$為單位向量,$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$,($\overrightarrow{c}$-$\overrightarrow{a}$)•(2$\overrightarrow{c}$-$\overrightarrow$)=0,$\overrightarrow{OP}$=$λ\overrightarrow{OA}$+$μ\overrightarrow{OB}$(1≤λ,μ≤2),則|$\overrightarrow{CP}$|的取值范圍是$[\frac{\sqrt{19}-\sqrt{3}}{4},\frac{\sqrt{127}+\sqrt{3}}{4}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.一船以24km/h的速度向正北方向航行,在點(diǎn)A處望見(jiàn)燈塔S在船的北偏東30°方向上,15min后到點(diǎn)B處望見(jiàn)燈塔在船的北偏東75°方向上,則船在點(diǎn)B時(shí)與燈塔S的距離是3$\sqrt{2}$km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知a,b,c∈R+,則“a+b>c”是“$\frac{a}{1+a}$+$\frac{1+b}$>$\frac{c}{1+c}$”成立的( 。
A.充分不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知cos($\frac{π}{2}$+α)=$\frac{1}{2}$,α∈(π,$\frac{3π}{2}$),則cosα=$-\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知直線l的斜率k滿足-1≤k<1,則它的傾斜角α的取值范圍是( 。
A.-45°<α<45°B.0°≤α<45°或135°≤α<180°
C.0°<α<45°或135°<α<180°D.-45°≤α<45°

查看答案和解析>>

同步練習(xí)冊(cè)答案