分析 由已知中函數(shù)$f(x)=\left\{\begin{array}{l}{2^{-x}}({x≤1})\\{log_{16}}x({x>1})\end{array}\right.$,分類討論滿足$f(x)=\frac{1}{4}$的實(shí)數(shù)x的值,綜合討論結(jié)果,可得答案.
解答 解:當(dāng)x≤1時,由$f(x)={2}^{-x}=\frac{1}{4}$得:x=2(舍去),
當(dāng)x>1時,由$f(x)={log}_{16}x=\frac{1}{4}$得:x=2,
故答案為:2.
點(diǎn)評 本題考查的知識點(diǎn)是分段函數(shù)的應(yīng)用,熟練掌握分段函數(shù)分類討論的思想,是解答的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x$>-\frac{1}{3}$} | B. | {x|x$<\frac{1}{2}$} | C. | {x|-$\frac{1}{3}<x<\frac{1}{2}$} | D. | {x|x$<-\frac{1}{3}$或x$>\frac{1}{2}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
a11 | a12 | a13 | … |
a21 | a22 | a23 | … |
a31 | a32 | a33 | … |
… | … | … | … |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com