8.已知函數(shù)f(x)=x2+x-ln(1+x)
(I)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若關(guān)于x的方程f(x)=$\frac{5}{2}$x-b在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(Ⅲ)證明:對任意的正整數(shù)n,不等式2+$\frac{3}{4}$+$\frac{4}{9}$+…+$\frac{n+1}{{n}^{2}}$>ln(n+1)都成立.

分析 (Ⅰ)先求出函數(shù)f(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間;
(2)關(guān)于x的方程f(x)=$\frac{5}{2}$x-b在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,將問題轉(zhuǎn)化為φ(x)=0,在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,對φ(x)對進(jìn)行求導(dǎo),從而求出b的范圍;
(3)f(x)=x2+x-ln(x+1)的定義域?yàn)閧x|x>-1},利用導(dǎo)數(shù)研究其單調(diào)性,可以推出ln(x+1)-x2-x≤0,令x=$\frac{1}{n}$,可以得到ln($\frac{n+1}{n}$)<$\frac{n+1}{{n}^{2}}$,利用此不等式進(jìn)行放縮證明.

解答 解:(Ⅰ)函數(shù)f(x)的定義域?yàn)椋?1,+∞),且f′(x)=2x+1-$\frac{1}{x+1}$=$\frac{x(2x+3)}{x+1}$,
令f′(x)>0,解得:x>0,令f′(x)<0,解得:-1<x<0,
∴函數(shù)f(x)在(-1,0)遞減,在(0,+∞)遞增;
(Ⅱ)f(x)=x2+x-ln(x+1)
由f(x)=$\frac{5}{2}$x-b,得ln(x+1)-x2+$\frac{3}{2}$x-b=0
令φ(x)=ln(x+1)-x2+$\frac{3}{2}$x-b,
則f(x)=$\frac{5}{2}$x-b在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根等價(jià)于φ(x)=0在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根.
φ′(x)=$\frac{1}{x+1}$-2x+$\frac{3}{2}$=$\frac{-(4x+5)(x-1)}{2(x+1)}$,
當(dāng)x∈[0,1]時(shí),φ′(x)>0,于是φ(x)在[0,1)上單調(diào)遞增;
當(dāng)x∈(1,2]時(shí),φ′(x)<0,于是φ(x)在(1,2]上單調(diào)遞減,
依題意有φ(0)=-b≤0,
φ(1)=ln(1+1)-1+$\frac{3}{2}$-b>0,
φ(2)=ln(1+2)-4+3-b≤0
解得,ln3-1≤b<ln2+$\frac{1}{2}$,
故實(shí)數(shù)b的取值范圍為:[ln3-1,ln2+$\frac{1}{2}$);
(Ⅲ):f(x)=x2+x-ln(x+1)的定義域?yàn)閧x|x>-1},
由(1)知f′(x)=2x+1-$\frac{1}{x+1}$=$\frac{x(2x+3)}{x+1}$,
令f′(x)=0得,x=0或x=-$\frac{3}{2}$(舍去),
∴當(dāng)-1<x<0時(shí),f′(x)<0,f(x)單調(diào)遞減;
當(dāng)x>0時(shí),f′(x)>0,f(x)單調(diào)遞增.
∴f(0)為f(x)在(-1,+∞)上的最小值.
∴f(x)≥f(0),故ln(x+1)-x2-x≤0(當(dāng)且僅當(dāng)x=0時(shí),等號(hào)成立)
對任意正整數(shù)n,取x=$\frac{1}{n}$>0得,ln($\frac{1}{n}$+1)<$\frac{1}{n}$+$\frac{1}{{n}^{2}}$,
∴l(xiāng)n($\frac{n+1}{n}$)<$\frac{n+1}{{n}^{2}}$,
故2+$\frac{3}{4}$>ln2+ln$\frac{3}{2}$+ln$\frac{4}{3}$+…+ln$\frac{n+1}{n}$=ln(n+1).

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究函數(shù)的極值及單調(diào)性,解題過程中用到了分類討論的思想,分類討論的思想也是高考的一個(gè)重要思想,要注意體會(huì)其在解題中的運(yùn)用,第三問難度比較大,利用了前兩問的結(jié)論進(jìn)行證明,此題屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平行四邊形ABCD中,AB=4,AD=2,E,F(xiàn)分別是BC,CD的中點(diǎn),且$\overrightarrow{DE}•\overrightarrow{BF}$=-15,則∠ABC=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{bn}滿足b1=1,b2=5,bn+1=5bn-6bn-1,若數(shù)列{an}滿足a1=1,an=bn($\frac{1}{_{1}}$+$\frac{1}{_{2}}$+…+$\frac{1}{_{n-1}}$)(n≥2,n∈N*).
(1)求證:數(shù)列{bn+1-3bn}為等比數(shù)列,并求{bn}的通項(xiàng)公式;
(2)求證:(1+$\frac{1}{{a}_{1}}$)(1+$\frac{1}{{a}_{2}}$)(1+$\frac{1}{{a}_{3}}$)…(1+$\frac{1}{{a}_{n}}$)<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=sinx+$\sqrt{3}$cosx,則下列命題正確的是①③④.(填上你認(rèn)為正確的所有命題的序號(hào))
①函數(shù)f(x)(x∈[0,$\frac{π}{2}$])的單調(diào)遞增區(qū)間是[0,$\frac{π}{6}$];
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(-$\frac{π}{6}$,0)對稱;
③函數(shù)f(x)的圖象向左平移m(m>0)個(gè)單位長度后,所得的圖象關(guān)于y軸對稱,則m的最小值是$\frac{π}{6}$;
④若實(shí)數(shù)m使得方程f(x)=m在[0,2π]上恰好有三個(gè)實(shí)數(shù)解x1,x2,x3,則x1+x2+x3=$\frac{7π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)在定義域R內(nèi)可導(dǎo),f(1.9+x)=f(0.1-x)且(x-1)f′(x)<0,a=f(0),b=f($\frac{1}{2}$),c=f(3),則a,b,c的大小關(guān)系是(  )
A.a>b>cB.c>a>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.sin45°cos15°-cos135°sin165°=( 。
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知以點(diǎn)P為圓心的圓經(jīng)過點(diǎn)A(-1,1)和B(2,0),線段AB的垂直平分線交該圓于C、D兩點(diǎn),且|CD|=10
(Ⅰ)求直線CD的方程;
(Ⅱ)求圓P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn=n(2n+1),則a10=39.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.從某校高三年級抽查100名男同學(xué),如果以身高達(dá)到170cm作為達(dá)標(biāo)的標(biāo)準(zhǔn),對抽取的100名男同學(xué),得到以下列聯(lián)表:
  身高達(dá)標(biāo) 身高不達(dá)標(biāo) 總計(jì)
 積極參加體育鍛煉 40  75
 不
積極參加體育鍛煉
 10  
 總計(jì)   100
(1)請完成上表;
(2)能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為體育鍛煉與身高達(dá)標(biāo)有關(guān)系(K2的觀察值精確到0.001)?
參考:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)^{2}}$
 P(k2≥k0 0.15 0.10
 k0 2.072 2.706

查看答案和解析>>

同步練習(xí)冊答案