11.已知△ABC的外心為O,重心為G,且2|AB|+|AC|=6,則$\overrightarrow{AO}$•$\overrightarrow{AG}$的取值范圍是[$\frac{6}{5},6$).

分析 由題意畫出圖形,求出$\overrightarrow{AB}•\overrightarrow{AO}=|\overrightarrow{AB}|•|\overrightarrow{AO}|•\frac{1}{2}\frac{|\overrightarrow{AB}|}{|\overrightarrow{AO}|}=\frac{1}{2}|\overrightarrow{AB}{|}^{2}$,$\overrightarrow{AC}•\overrightarrow{AO}=\frac{1}{2}|\overrightarrow{AC}{|}^{2}$,再由重心的性質(zhì)把$\overrightarrow{AG}$用$\overrightarrow{AB}、\overrightarrow{AC}$表示,展開$\overrightarrow{AO}$•$\overrightarrow{AG}$,結(jié)合2|AB|+|AC|=6化為關(guān)于|$\overrightarrow{AB}$|的二次函數(shù),則答案可求.

解答 解:如圖,過點O分別作OF⊥AB于F,OH⊥AC于H,則F、H分別是AB、AC的中點,
可得Rt△AFO中,cos∠OAF=$\frac{|\overrightarrow{AF}|}{|\overrightarrow{AO}|}$=$\frac{1}{2}\frac{|\overrightarrow{AB}|}{|\overrightarrow{AO}|}$,
∴$\overrightarrow{AB}•\overrightarrow{AO}=|\overrightarrow{AB}|•|\overrightarrow{AO}|•\frac{1}{2}\frac{|\overrightarrow{AB}|}{|\overrightarrow{AO}|}=\frac{1}{2}|\overrightarrow{AB}{|}^{2}$,
同理可得$\overrightarrow{AC}•\overrightarrow{AO}=\frac{1}{2}|\overrightarrow{AC}{|}^{2}$,
∵G為△ABC的重心,∴$\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AD}=\frac{2}{3}×\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})=\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})$,
∴$\overrightarrow{AO}$•$\overrightarrow{AG}$=$\overrightarrow{AO}•\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})=\frac{1}{3}(\overrightarrow{AB}•\overrightarrow{AO}+\overrightarrow{AC}•\overrightarrow{AO})$=$\frac{1}{6}(|\overrightarrow{AB}{|}^{2}+|\overrightarrow{AC}{|}^{2})$,
∵2|AB|+|AC|=6,∴0<$|\overrightarrow{AB}|<3$,且|$\overrightarrow{AC}$|=6-2|$\overrightarrow{AB}$|,
則$\overrightarrow{AO}$•$\overrightarrow{AG}$=$\frac{1}{6}(|\overrightarrow{AB}{|}^{2}+36-24|\overrightarrow{AB}|+4|\overrightarrow{AB}{|}^{2})$=$\frac{1}{6}(5|\overrightarrow{AB}{|}^{2}-24|\overrightarrow{AB}|+36)$.
∵0<$|\overrightarrow{AB}|<3$,
∴當(dāng)|$\overrightarrow{AB}$|=$\frac{12}{5}$時,$(\overrightarrow{AO}•\overrightarrow{AG})_{min}=\frac{24}{5}$;當(dāng)|$\overrightarrow{AB}$|→0時,$\overrightarrow{AO}•\overrightarrow{AG}$→6.
∴$\overrightarrow{AO}$•$\overrightarrow{AG}$的取值范圍是[$\frac{6}{5},6$).
故答案為:[$\frac{6}{5},6$).

點評 本題考查平面向量的數(shù)量積運算,著重考查了平面向量的數(shù)量積的運算性質(zhì)和三角形外心、重心等知識,考查數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了二次函數(shù)最值的求法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在遞增等比數(shù)列{an}中,a2a16=6,a4+a14=5,則$\frac{{{a_{20}}}}{{{a_{10}}}}$等于( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{2}{3}$或$\frac{3}{2}$D.$-\frac{2}{3}$或$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在等差數(shù)列{an}中,前10項的和為20,前20項的和為60,則前30項的和為(  )
A.80B.100C.120D.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)y=$\frac{|sinα|}{sinα}+\frac{|cosα|}{cosα}$,根據(jù)下列條件,分別求出角α的取值范圍.
(1)y=-2;
(2)y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知-1≤x≤1,則y=$\sqrt{9-{x}^{2}}$+$\sqrt{1-{x}^{2}}$的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=($\sqrt{3}$,1),設(shè)函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$.
(1)求f($\frac{π}{2}$)的值;
(2)若f(α+$\frac{2π}{3}$)=$\frac{6}{5}$,α∈(-$\frac{π}{2}$,0).求sin(α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x)=$\left\{\begin{array}{l}{x+1(x<0)}\\{-x-1(x≥0)}\end{array}\right.$則不等式x+(x+1)•f(x-1)≤3的解集是( 。
A.{x|x≥-3}B.{x|x≥1}C.{x|-3≤x≤1}D.{x|x≥1或x≤-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=2x-1-2,x∈(-∞,2]的值域為(-2,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.圓C1的方程為x2+y2+2x-4y-3=0,圓C2的方程為(x-5)2+(y+3)2=9,則兩圓圓心的距離|C1C2|等于( 。
A.$\sqrt{17}$B.$\sqrt{61}$C.$\sqrt{41}$D.$\sqrt{37}$

查看答案和解析>>

同步練習(xí)冊答案