14.如圖,已知拋物線y2=4x的焦點(diǎn)為F,過(guò)F的直線AB交拋物線于A、B,交拋物線的準(zhǔn)線于點(diǎn)C,若$\frac{{|{BF}|}}{{|{BC}|}}$=$\frac{1}{2}$,則|AB|=$\frac{16}{3}$.

分析 由題意畫(huà)出圖形,由$\frac{{|{BF}|}}{{|{BC}|}}=\frac{1}{2}$,及拋物線定義求得$∠CBD=\frac{π}{3}$,進(jìn)一步求得BF,作AE垂直于準(zhǔn)線交準(zhǔn)線于E點(diǎn),設(shè)|AF|=m,則$|{AE}|=m,\frac{{|{AE}|}}{{|{AC}|}}=\frac{1}{2}$,故$\frac{m}{4+m}=\frac{1}{2}$,求得m值,則AB可求.

解答 解:如圖,作BD垂直于準(zhǔn)線交準(zhǔn)線于D點(diǎn),

由$\frac{{|{BF}|}}{{|{BC}|}}=\frac{1}{2}$,及拋物線定義可得$cos∠CBD=\frac{{|{BD}|}}{{|{BC}|}}=\frac{1}{2},∠CBD=\frac{π}{3}$,
∴$|{CF}|=4,|{BF}|=\frac{4}{3}$,
作AE垂直于準(zhǔn)線交準(zhǔn)線于E點(diǎn),設(shè)|AF|=m,則$|{AE}|=m,\frac{{|{AE}|}}{{|{AC}|}}=\frac{1}{2}$,
故$\frac{m}{4+m}=\frac{1}{2}$,解得m=4,
∴|AB|=|AF|+|BF|=4+$\frac{4}{3}=\frac{16}{3}$.
故答案為:$\frac{16}{3}$.

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單性質(zhì),關(guān)鍵是對(duì)拋物線定義的熟練應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若關(guān)于x的方程logax=-|x-2|,恰有二個(gè)實(shí)根,則a的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知a=(-$\frac{3}{2}$)-3,b=tan2,c=log${\;}_{\frac{1}{4}}$8,則有( 。
A.c<b<aB.b<c<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=lnx+ax+1,a∈R
(1)求f(x)在x=1處的切線方程;
(2)若不等式f(x)≤0恒成立,求a的取值范圍;
(3)記bn=nln[($\frac{1}{2}$)n-1+1],數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求證:Tn<4-$\frac{n+2}{{{2^{n-1}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=log2x,在區(qū)間[1,4]上隨機(jī)取一個(gè)數(shù)x,使得f(x)的值介于-1到1之間的概率為(  )
A.$\frac{1}{3}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知a=log20.3,b=log0.32,c=log0.80.4則(  )
A.c>a>bB.b>c>aC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=ex+a,g(x)=-x2-4x+2,設(shè)函數(shù)h(x)=$\left\{\begin{array}{l}f(x),f(x)≤g(x)\\ g(x),f(x)>g(x)\end{array}$,若函數(shù)h(x)的最大值為2,則a=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知{an}是一個(gè)公差大于0的等差數(shù)列,且滿足a2a3=15,a1+a4=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{${\frac{b_n}{2^n}}\right.$}的前n項(xiàng)和為T(mén)n且Tn=$\frac{{{a_n}+1}}{2}$(n∈N+),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某研究性學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)的影響,部分統(tǒng)計(jì)數(shù)據(jù)如表
使用智能手機(jī)不使用智能手機(jī)合計(jì)
學(xué)習(xí)成績(jī)優(yōu)秀4812
學(xué)習(xí)成績(jī)不優(yōu)秀16218
合計(jì)201030
附表:
p(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
經(jīng)計(jì)算K2=10,則下列選項(xiàng)正確的是:( 。
A.有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
B.有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響
C.有99.9%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
D.有99.9%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響

查看答案和解析>>

同步練習(xí)冊(cè)答案