2.袋中共有8個球,其中有3個白球,5個黑球,這些球除顏色外完全相同.從袋中隨機取出一球,如果取出白球,則把它放回袋中;如果取出黑球,則該黑球不再放回,并且另補一個白球放入袋中.重復(fù)上述過程n次后,袋中白球的個數(shù)記為Xn
(1)求隨機變量X2的概率分布及數(shù)學(xué)期望E(X2);
(2)求隨機變量Xn的數(shù)學(xué)期望E(Xn)關(guān)于n的表達式.

分析 (1)由題意得到X2的所有取值,然后利用古典概型概率計算公式求出概率,則可列出頻率分布表,代入期望公式求期望;
(2)設(shè)P(Xn=3+k)=pk,k=0,1,2,3,4,5.則p0+p1+p2+p3+p4+p5=1,E(Xn)=3p0+4p1+5p2+6p3+7p4+8p5.再把P(Xn+1=3)、P(Xn+1=4)、…、
P(Xn+1=8)用p0、p1、p2、p3、p4、p5表示,得到E(Xn+1)-8=$\frac{7}{8}$(E(Xn)-8),從而說明數(shù)列{E(Xn)-8}為等比數(shù)列,由等比數(shù)列的通項公式得答案.

解答 解:(1)由題意可知X2=3,4,5.
當(dāng)X2=3時,即二次摸球均摸到白球,其概率是P(X2=3)=$\frac{C_3^1}{C_8^1}×\frac{C_3^1}{C_8^1}$=$\frac{9}{64}$;
當(dāng)X2=4時,即二次摸球恰好摸到一白,一黑球,其概率是P(X2=4)=$\frac{C_3^1C_5^1}{C_8^1C_8^1}+\frac{C_5^1C_4^1}{C_8^1C_8^1}$=$\frac{35}{64}$;
當(dāng)X2=5時,即二次摸球均摸到黑球,其概率是P(X2=5)=$\frac{C_5^1C_4^1}{C_8^1C_8^1}$=$\frac{5}{16}$.
所以隨機變量X2的概率分布如下表:

X2345
P$\frac{9}{64}$$\frac{35}{64}$$\frac{5}{16}$
數(shù)學(xué)期望E(X2)=$3×\frac{9}{64}+4×\frac{35}{64}+5×\frac{5}{16}=\frac{267}{64}$;
(2)設(shè)P(Xn=3+k)=pk,k=0,1,2,3,4,5.
則p0+p1+p2+p3+p4+p5=1,E(Xn)=3p0+4p1+5p2+6p3+7p4+8p5
P(Xn+1=3)=$\frac{3}{8}{p_0}$,P(Xn+1=4)=$\frac{5}{8}$p0+$\frac{4}{8}$p1,P(Xn+1=5)=$\frac{4}{8}$p1+$\frac{5}{8}$p2,P(Xn+1=6)=$\frac{3}{8}$p2+$\frac{6}{8}$p3,
P(Xn+1=7)=$\frac{2}{8}$p3+$\frac{7}{8}$p4,P(Xn+1=8)=$\frac{1}{8}$p4+$\frac{8}{8}$p5
∴E(Xn+1)=3×$\frac{3}{8}$p0+4×($\frac{5}{8}$p0+$\frac{4}{8}$p1)+5×($\frac{4}{8}$p1+$\frac{5}{8}$p2)+6×($\frac{3}{8}$p2+$\frac{6}{8}$p3)+7×($\frac{2}{8}$p3+$\frac{7}{8}$p4)+8×($\frac{1}{8}$p4+$\frac{8}{8}$p5
=$\frac{29}{8}$p0+$\frac{36}{8}$p1+$\frac{43}{8}$p2+$\frac{50}{8}$p3+$\frac{57}{8}$p4+$\frac{64}{8}$p5=$\frac{7}{8}$(3p0+4p1+5p2+6p3+7p4+8p5)+p0+p1+p2+p3+p4+p5=$\frac{7}{8}$E(Xn)+1.
由此可知,E(Xn+1)-8=$\frac{7}{8}$(E(Xn)-8).
又E(X1)-8=$-\frac{35}{8}$,
∴E(Xn)=$8-\frac{35}{8}{(\frac{7}{8})^{n-1}}$.

點評 本題考查了離散型隨機變量的期望與方差,考查了古典概型概率公式的應(yīng)用,考查了等比關(guān)系的確定及等比數(shù)列通項公式的求法,尋找E(Xn+1)-8與(E(Xn)-8)的關(guān)系是解答該題的關(guān)鍵,屬有一定難度題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.己知正四棱錐S-ABCD的側(cè)棱長與底面邊長都相等,E是SB的中點,則AE,SD所成角的余弦值為(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x}-1,x≥0}\\{2cosx-1,-2π≤x<0}\end{array}\right.$的所有零點的和等于( 。
A.1-2πB.1-$\frac{3π}{2}$C.1-πD.1-$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知點A1(a1,1),A2(a2,2),…,An(an,n)(n∈N*)在函數(shù)y=log${\;}_{\frac{1}{3}}$x的圖象上,則數(shù)列{an}的通項公式為an=($\frac{1}{3}$)n;設(shè)O為坐標(biāo)原點,點Mn(an,0)(n∈N*),則△OA1M1,△OA2M2,…,△OAnMn中,面積的最大值是$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,已知正方形ABCD的邊長為2,點E為AB的中點.以A為圓心,AE為半徑,作弧交AD于點F.若P為劣弧$\widehat{EF}$上的動點,則$\overrightarrow{PC}•\overrightarrow{PD}$的最小值為5-2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖所示的流程圖,最后輸出n的值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖在邊長為1的正方形網(wǎng)格中用粗線畫出了某個多面體的三視圖,則該多面體的表面積為8+12$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=x•lnx2,g(x)=$\left\{\begin{array}{l}{{e}^{x}-{e}^{-x},x>0}\\{{e}^{-x}-{e}^{x},x<0}\end{array}\right.$則下列命題正確的是( 。
A.f(x)是奇函數(shù),g(x)是奇函數(shù)B.f(x)是偶函數(shù),g(x)是奇函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù)D.f(x)是偶函數(shù),g(x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$則z=2|x|+y的取值范圍是(  )
A.[-1,3]B.[1,11]C.[1,3]D.[-1,11]

查看答案和解析>>

同步練習(xí)冊答案