3.執(zhí)行如圖所示的程序框圖,則輸出的k值為( 。
A.7B.9C.11D.13

分析 模擬程序的運行過程,計算前若干次循環(huán)的結(jié)果,與判斷框條件比較,即可得到結(jié)論.

解答 解:模擬執(zhí)行程序,可得
S=1,k=1
滿足條件S>0.1,執(zhí)行循環(huán)體,S=$\frac{1}{3}$,k=3
滿足條件S>0.1,執(zhí)行循環(huán)體,S=$\frac{1}{5}$,k=5
滿足條件S>0.1,執(zhí)行循環(huán)體,S=$\frac{1}{7}$,k=7
滿足條件S>0.1,執(zhí)行循環(huán)體,S=$\frac{1}{9}$,k=9
滿足條件S>0.1,執(zhí)行循環(huán)體,S=$\frac{1}{11}$,k=11
不滿足條件S>0.1,退出循環(huán),輸出k的值為11.
故選:C.

點評 本題考查了程序框圖中的循環(huán)結(jié)構(gòu)的應(yīng)用,正確理解程序功能是解答本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.給出以下命題:
①命題“若am2<bm2”,則“a<b”的逆命題是真命題;
②命題“p或q”為真命題,則命題p和命題q均為真命題;
③已知x∈R,則“x>1”是“x>2”的充分不必要條件;
④命題“?x∈R,x2-x>0”的否定是:“?x∈R,x2-x≤0”
其中真命題的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若m=$\sqrt{3}$+$\sqrt{5}$,n=$\sqrt{2}$+$\sqrt{6}$,則m、n的大小關(guān)系是( 。
A.m>nB.m<nC.m=nD.m≤n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知四面體ABCD的四個頂點A、B、C、D在同一個球O的球面上,球心O恰好在側(cè)棱DA上,且滿足AB=BC=$\sqrt{2}$,AC=2,DC=2$\sqrt{3}$,則這個球的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖△ABC為正三角形,且BC=CD=2,CD⊥BC,將△ABC沿BC翻折
(1)若點A的射影在BD,求AD的長;
(2)若點A的射影在△BCD內(nèi),且AB與面ACD所成的角的正弦值為$\frac{2\sqrt{22}}{11}$,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示是外框為圓形的一種圖標(biāo).已知圓的半徑為60mm,A,B,C,D是圓周的四等分點,圓內(nèi)框架總長是360mm,設(shè)計要求是:矩形EFGH的周長與面積的比值最小.試問矩形EFGH的長與寬各是多少mm時符合設(shè)計要求.此時的比值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=(x+a)ex在x=0處的切線與直線x+y+1=0垂直,則切線方程為y=x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知平面上共線的三點A,B,C和定點O,若等差數(shù)列{an}滿足:$\overrightarrow{OA}$=a15$\overrightarrow{OB}$+a24$\overrightarrow{OC}$,則數(shù)列{an}的前38項之和為19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(α)=$\frac{sin(π-α)•cos(2π-α)}{cos(-π-α)•tan(π-α)}$,則f(-$\frac{31π}{3}$)的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案