13.已知f(α)=$\frac{sin(π-α)•cos(2π-α)}{cos(-π-α)•tan(π-α)}$,則f(-$\frac{31π}{3}$)的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

分析 利用誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式化簡已知可得f(α)=cosα,根據(jù)誘導(dǎo)公式即可計(jì)算得解.

解答 解:∵f(α)=$\frac{sin(π-α)•cos(2π-α)}{cos(-π-α)•tan(π-α)}$
=$\frac{sinα•cosα}{(-cosα)(-tanα)}$
=cosα,
∴f(-$\frac{31π}{3}$)=cos(-$\frac{31π}{3}$)=cos(10$π+\frac{1}{3}π$)=cos$\frac{π}{3}$=$\frac{1}{2}$.
故選:A.

點(diǎn)評 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,則輸出的k值為( 。
A.7B.9C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知正項(xiàng)等比數(shù)列{an}的首項(xiàng)a1=1,a2•a4=16,則a8=( 。
A.32B.64C.128D.256

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個(gè)四面體的頂點(diǎn)在點(diǎn)間直角坐系O-xyz中的坐標(biāo)分別是(1,0,0),(0,1,0),(0,0,1),(1,1,1),畫該四面體三視圖中的正視圖時(shí),以xOz平面為投影面,則得到的正視圖可為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.將函數(shù)y=4sin(2x+$\frac{3π}{5}$)圖象向右平移$\frac{π}{5}$個(gè)單位長度,得到的函數(shù)圖象的一條對稱軸方程是(  )
A.x=$\frac{3π}{5}$B.x=$\frac{3π}{10}$C.x=$\frac{3π}{20}$D.x=$\frac{7π}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)f(x)=$\left\{{\begin{array}{l}{sinx,x∈[0,1]}\\{{x^2},x∈[1,2]}\end{array}}$,則$\int_0^2$f(x)dx等于( 。
A.$\frac{7}{3}$-cos1B.$\frac{10}{3}$-cos1C.$\frac{7}{3}$+cos1D.$\frac{10}{3}$+cos1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)拋物線y2=4x的焦點(diǎn)為F,A、B兩點(diǎn)在拋物線上,且A、B、F三點(diǎn)共線,過AB的中點(diǎn)M作y軸的垂線與拋物線在第一象限內(nèi)交于點(diǎn)N,若|NF|=$\frac{3}{2}$,則M點(diǎn)的橫坐標(biāo)為( 。
A.3B.2C.$\frac{5}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.正四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,若直線PC與平面PDB所成角的為30°,則正四棱錐P-ABCD的外接球的表面積為$\frac{32}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.三棱錐A-BCD中,AB=$\sqrt{6}$,其余各棱長都為2,則該三棱錐外接球的表面積為$\frac{20}{3}$π.

查看答案和解析>>

同步練習(xí)冊答案