17.已知點(diǎn)B坐標(biāo)為(-1,0),點(diǎn)A在圓(x-5)2+y2=16上運(yùn)動(dòng),
(1)求線段AB中點(diǎn)M的軌跡方程;
(2)點(diǎn)C(1,a),若過(guò)點(diǎn)C且在兩坐標(biāo)軸上截距相等的直線與圓相切,求a的值及切線方程.

分析 (1)設(shè)出A,M坐標(biāo),利用M為線段AB中點(diǎn),確定A,M坐標(biāo)之間的關(guān)系,根據(jù)點(diǎn)A在圓(x-5)2+y2=16上運(yùn)動(dòng),可得線段AB中點(diǎn)M的軌跡方程;
(2)設(shè)出切線方程,利用直線與圓相切,可求a的值及切線方程.

解答 解:(1)設(shè)A(m,n),M(x,y),
∵M(jìn)為線段AB中點(diǎn),
∴$\left\{\begin{array}{l}{x=\frac{m-1}{2}}\\{y=\frac{n}{2}}\end{array}\right.$,∴$\left\{\begin{array}{l}{m=2x+1}\\{n=2y}\end{array}\right.$,
又點(diǎn)A在圓(x-5)2+y2=16上運(yùn)動(dòng),
∴(2x+1-5)2+(2y)2=16,
即(x-2)2+y2=4.
∴點(diǎn)M的軌跡方程為:(x-2)2+y2=4; 
(2)設(shè)切線方程為:y=ax和x+y=1+a
則$\frac{|5a|}{\sqrt{{a}^{2}+1}}$=4和$\frac{|4-a|}{\sqrt{2}}$=2,解得:a=±$\frac{4}{3}$或a=4$±2\sqrt{2}$
∴切線方程為y=±$\frac{4}{3}$x和x+y=5±4$\sqrt{2}$.

點(diǎn)評(píng) 本題考查軌跡方程,考查直線與圓的位置關(guān)系,考查代入法的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知A為△ABC的內(nèi)角,cosA=-$\frac{4}{5}$,則sin2A=( 。
A.-$\frac{24}{25}$B.-$\frac{12}{25}$C.$\frac{12}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=|x-1|+1
(1)用分段函數(shù)的形式表示該函數(shù);
(2)畫(huà)出該函數(shù)的圖象;
(3)寫出該函數(shù)的定義域,值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.過(guò)點(diǎn)(-1,2)且與直線y=tan30°x+2垂直的直線方程為( 。
A.y-2=$\frac{\sqrt{3}}{3}$(x+1)B.y-2=$\sqrt{3}$(x+1)C.y-2=-$\frac{\sqrt{3}}{3}$(x+1)D.y-2=-$\sqrt{3}$(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知直角梯形ABCD如圖1所示,CD=2,AB=4,AD=2,線段AB上有一點(diǎn)P,過(guò)點(diǎn)P作AB的垂線交l,當(dāng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),記AP=x,l截直角梯形的左邊部分面積為S(x),
(1)試寫出S(x)關(guān)于x的函數(shù),并在圖2中畫(huà)出函數(shù)圖象.
(2)當(dāng)點(diǎn)P位于何處時(shí),S(x)為直角梯形ABCD面積的$\frac{3}{4}$?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)$f(x)=\frac{x}{2x+1}$,則f[f(x)]=$\frac{x}{4x+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.?dāng)?shù)列{an}的通項(xiàng)公式為an=2ncos$\frac{nπ}{2}$,n∈N*,其前n項(xiàng)和為Sn,則S2016=$\frac{4}{5}$(22016-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.計(jì)算:
(1)已知扇形的周長(zhǎng)為10,面積是4,求扇形的圓心角.
(2)已知扇形的周長(zhǎng)為40,當(dāng)他的半徑和圓心角取何值時(shí),才使扇形的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)數(shù)列{an}是等差數(shù)列,a1=2,且a2,a3,a4+1成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)bn=$\frac{1}{{{a}_{n}}^{2}-1}$,數(shù)列{bn}的前n項(xiàng)和為Sn,求證:Sn$<\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案