A. | -1 | B. | 1 | C. | $-\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
分析 由題意可得θ+$\frac{π}{3}$為第三象限角,利用同角三角函數(shù)的基本關(guān)系求得sin(θ+$\frac{π}{3}$)的值,可得sinθ+$\sqrt{3}$cosθ=2sin(θ+$\frac{π}{3}$)的值.
解答 解:∵θ為第二象限角,若$tan(θ+\frac{π}{3})=\frac{1}{2}$>0,∴θ+$\frac{π}{3}$為第三象限角,
∵tan(θ+$\frac{π}{3}$)=$\frac{sin(θ+\frac{π}{3})}{cos(θ+\frac{π}{3})}$=$\frac{1}{2}$,${sin}^{2}(θ+\frac{π}{3})$+${cos}^{2}(θ+\frac{π}{3})$=1,sin(θ+$\frac{π}{3}$)<0,
求得sin(θ+$\frac{π}{3}$)=-$\frac{\sqrt{5}}{5}$,故sinθ+$\sqrt{3}$cosθ=2sin(θ+$\frac{π}{3}$)=-$\frac{2\sqrt{5}}{5}$,
故選:C.
點評 本題主要考查兩角和差的三角公式,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{-\frac{π}{4},\frac{π}{4}}]$ | B. | $[{-\frac{π}{2},0}]$ | C. | $[{0,\frac{π}{2}}]$ | D. | $[{\frac{π}{4},\frac{3π}{4}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[\frac{π}{8},\frac{5π}{8}]$ | B. | $[-\frac{7π}{8},-\frac{3π}{8}]$ | C. | $[\frac{9π}{4},\frac{21π}{8}]$ | D. | $[\frac{9π}{8},\frac{33π}{8}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
消費金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
人數(shù) | 5 | 10 | 15 | 47 | x |
消費金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
人數(shù) | 2 | 3 | 10 | y | 2 |
女士 | 男士 | 總計 | |
網(wǎng)購達(dá)人 | |||
非網(wǎng)購達(dá)人 | |||
總計 |
P(k2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com