14.已知α為第二象限角,β為第一象限角,sinα=$\frac{3}{5}$,cosβ=$\frac{\sqrt{2}}{2}$
(1)求cos2α的值;
(2)求tan(2α-β)的值.

分析 (1)原式利用二倍角的余弦函數(shù)公式化簡(jiǎn),把sinα的值代入計(jì)算即可求出值;
(2)由題意求出cosα與sinβ的值,進(jìn)而求出tanα與tanβ的值,求出tan2α的值,原式利用兩角和與差的正切函數(shù)公式化簡(jiǎn),把各自的值代入計(jì)算即可求出值.

解答 解:(1)∵sinα=$\frac{3}{5}$,
∴cos2α=1-2sin2α=1-2×$\frac{9}{25}$=$\frac{7}{25}$;
(2)∵α為第二象限角,β為第一象限角,sinα=$\frac{3}{5}$,cosβ=$\frac{\sqrt{2}}{2}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{4}{5}$,sinβ=$\frac{\sqrt{2}}{2}$,
∴tanα=-$\frac{3}{4}$,tanβ=1,tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{2×(-\frac{3}{4})}{1-\frac{9}{16}}$=-$\frac{24}{7}$,
則tan(2α-β)=$\frac{tan2α-tanβ}{1+tan2αtanβ}$=$\frac{-\frac{24}{7}-1}{1-\frac{24}{7}}$=$\frac{31}{17}$.

點(diǎn)評(píng) 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)a>b>0,m=$\sqrt{a-b}$,n=$\sqrt{a}$-$\sqrt$,則m,n的大小關(guān)系是m>n.(選>,=,<)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2cos2x+a
(1)求函數(shù)f(x)的最小正周期以及單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{4}$]時(shí),函數(shù)f(x)有最大值4,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,以等腰直角三角形ABC的斜邊BC上的高AD為折痕,把△ABD和△ACD折
成互相垂直的兩個(gè)平面后,某學(xué)生得出下列四個(gè)結(jié)論
①BD⊥AC;              
②△BAC是等邊三角形;
③三棱錐D-ABC是正三棱錐;
④平面ADC⊥平面ABC
其中正確的是(  )
A.①②④B.①②③C.②③④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.過點(diǎn)M(1,2)的直線l與圓C:(x-3)2+(y-4)2=25交于A,B兩點(diǎn),則|AB|的最小值是2$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若θ是△ABC的一個(gè)內(nèi)角,且sinθcosθ=$\frac{1}{8}$,則sinθ+cosθ=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$-\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)直線ax+2y+6=0與圓C:x2+y2-2x+4y+1=0相交于點(diǎn)P,Q兩點(diǎn),CP⊥CQ,則實(shí)數(shù)a的值為( 。
A.1B.2C.1或2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=x2+bx-3,對(duì)于給定的實(shí)數(shù)b,f(x)在區(qū)間[b-2,b+2]上有最大值M(b)和最小值m(b),記g(b)=M(b)-m(b).
(1)當(dāng)b>2時(shí),求g(b)的解析式;
(2)求g(b)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,則下面判斷正確的是(  )
A.在區(qū)間(-2,1)內(nèi)f(x)是增函數(shù)B.在(1,3)內(nèi)f(x)是減函數(shù)
C.在(4,5)內(nèi)f(x)是增函數(shù)D.在x=2時(shí)f(x)取到極小值

查看答案和解析>>

同步練習(xí)冊(cè)答案