分析 由約束條件作出可行域.
(1)化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合定點(diǎn)最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案;
(2)由$\sqrt{(x-1)^{2}+{y}^{2}}$的幾何意義,即可行域內(nèi)動(dòng)點(diǎn)與定點(diǎn)Q(1,0)的距離求解;
(3)由$\frac{y+1}{x+1}$的幾何意義,即可行域內(nèi)動(dòng)點(diǎn)與定點(diǎn)P(-1,-1)連線斜率的取值范圍求得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤2}\\{2y-x≥1}\end{array}\right.$作出可行域如圖,
(1)化z=2x+y為y=-2x+z,由圖可知,當(dāng)直線y=-2x+z過A(0,$\frac{1}{2}$)時(shí),直線在y軸上的截距最小,
z有最小值為2×$0+\frac{1}{2}=\frac{1}{2}$,當(dāng)直線y=-2x+z過C(1,2)時(shí),直線在y軸上的截距最大,z有最大值為2×1+2=4.
∴z=2x+y的取值范圍為[$\frac{1}{2}$,4];
(2)$\sqrt{(x-1)^{2}+{y}^{2}}$的幾何意義為可行域內(nèi)動(dòng)點(diǎn)與定點(diǎn)Q(1,0)的距離,最小值為$\frac{|1×1-2×0+1|}{\sqrt{5}}=\frac{2\sqrt{5}}{5}$;
(3)$\frac{y+1}{x+1}$的幾何意義為可行域內(nèi)動(dòng)點(diǎn)與定點(diǎn)P(-1,1)連線斜率的取值范圍,
∵${k}_{PB}=\frac{-1-1}{-1-1}=1$,${k}_{PD}=\frac{-1-2}{-1-0}=3$,∴$\frac{y+1}{x+1}$的取值范圍為[1,3].
點(diǎn)評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限的點(diǎn)集 | B. | 第二象限的點(diǎn)集 | C. | 第三象限的點(diǎn)集 | D. | 第四象限的點(diǎn)集 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
型號A | 型號B | 型號C | |
高配性 | 10 | 20 | z |
低配型 | 30 | 50 | 60 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1項(xiàng) | B. | 8項(xiàng) | C. | 9項(xiàng) | D. | 10項(xiàng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com