分析 (1)先求出第二組的頻率,再求出高,由此能作出頻率直方圖.
(2)[40,45)組,[45,50)組和[50,55)組的人數(shù)比為3:2:1,從而三組中抽出的人數(shù)分別為3,2,1,ξ=0,1,2,3,分別求出相應(yīng)的概率,由此能求出ξ的分布列和Eξ.
(3)[40,45)組,[45,50)組和[50,55)組中抽出的人數(shù)分別為3,2,1,由此能求出A組中3人來自三個不同年齡段的概率.
解答 解:(1)∵第二組的頻率為1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,
∴高為0.3÷5=0.06.
作出頻率直方圖,如右圖.
(2)∵[40,45)組,[45,50)組和[50,55)組的人數(shù)比為0.03:0.02:0.01=3:2:1,
∴三組中抽出的人數(shù)分別為3,2,1,
ξ=0,1,2,3,
P(ξ=0)=$\frac{{C}_{3}^{0}}{{C}_{6}^{3}}$=$\frac{1}{20}$,P(ξ=1)=$\frac{{C}_{3}^{1}{C}_{3}^{2}}{{C}_{6}^{3}}$=$\frac{9}{20}$,
P(ξ=2)=$\frac{{C}_{3}^{2}{C}_{3}^{1}}{{C}_{6}^{3}}$=$\frac{9}{20}$,P(ξ=3)=$\frac{{C}_{3}^{3}}{{C}_{6}^{3}}$=$\frac{1}{20}$,
∴ξ的分布列為:
ξ | 0 | 1 | 2 | 3 |
P | $\frac{1}{20}$ | $\frac{9}{20}$ | $\frac{9}{20}$ | $\frac{1}{20}$ |
點評 本題考查頻率分布直方圖的作法,考查離散型隨機變量的分布列、數(shù)學(xué)期望的求法,考查概率的求法,在歷年高考中都是必考題型之一.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“p或q”為真命題,則命題“p”和命題“q”均為真命題 | |
B. | “am2<bm2”是”a<b”的必要不充分條件 | |
C. | 命題p:存在x0∈R,使得x02+x0+1<0,則¬p:任意x∉R,都有x2+x+1≥0 | |
D. | 命題“若x2<1,則-1<x<1”的逆否命題是若x≥1或x≤-1,則x2≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{{2}^{x}}$>$\frac{1}{{3}^{x}}$ | B. | $\frac{1}{{x}^{2}-x+1}$>$\frac{1}{{x}^{2}+x+1}$ | ||
C. | $\frac{1}{{x}^{2}+1}$>$\frac{1}{{x}^{2}+2}$ | D. | $\frac{1}{2|x|}$>$\frac{1}{{x}^{2}+1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{13}{5}$ | B. | 3 | C. | $\frac{5}{2}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com