10.一幾何體的三視圖如圖所示,此該幾何體的體積是( 。
A.$\frac{π}{12}$a3B.$\frac{π}{8}$a3C.$\frac{π}{4}$a3D.$\frac{π}{2}$a3

分析 根據(jù)幾何體的三視圖,得出該幾何體是兩個圓錐體的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.

解答 解:根據(jù)幾何體的三視圖,得;
該幾何體是兩個底面直徑為a,高為$\frac{a}{2}$的圓錐體的組合體,
它的體積是:2×$\frac{1}{3}$π×${(\frac{a}{2})}^{2}$×$\frac{a}{2}$=$\frac{π}{12}$a3
故選:A.

點評 本題考查了利用幾何體的三視圖求體積的應用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.為了增強環(huán)保意識,我校從男生中隨機抽取了60人,從女生中隨機抽取了50人參加環(huán)保知識測試,統(tǒng)計數(shù)據(jù)如下表所示:
優(yōu)秀非優(yōu)秀總計
男生402060
女生203050
總計6050110
(Ⅰ)試判斷是否有99%的把握認為環(huán)保知識是否優(yōu)秀與性別有關(guān);
(Ⅱ)為參加市里舉辦的環(huán)保知識競賽,學校舉辦預選賽,已知在環(huán)保測試中優(yōu)秀的同學通過預選賽的概率為$\frac{2}{3}$,現(xiàn)在環(huán)保測試中優(yōu)秀的同學中選3人參加預選賽,若隨機變量X表示這3人中通過預選賽的人數(shù),求X的分布列與數(shù)學期望.
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.5000.4000.1000.0100.001
k0.4550.7082.7066.63510.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如果$\overrightarrow{a}$=-$\frac{2}{3}$$\overrightarrow$,則$\overrightarrow{a}$與$\overrightarrow$的關(guān)系是反向共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.式子($\sqrt{10}$)${\;}^{2-2lg\frac{4}{5}}$+2${\;}^{lo{g}_{4}(1-\sqrt{3})^{2}}$=$\sqrt{3}$+$\frac{23}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,長方體ABCD-A1B1C1D1中,AB=16,AD=10,AA1=6,點P在棱C1D1上,且D1P=6.
(1)求三棱錐P-A1CD的體積;
(2)請作圖:經(jīng)過點P在上底面內(nèi)畫一條直線和PB垂直;
(3)請作圖:經(jīng)過點P作長方體的一個截面,且截面圖形為正方形.(注意:要求寫出作法,明確所作直線與棱的交點的位置,不需要給出證明過程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖是某圓拱橋的示意圖,這個圓拱橋的水面跨度AB=24m,拱高OP=8m.問:為使寬為10m的船能從橋下順利通過,應如何限制船體及裝載的貨物在水面以上的高度?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)y=f(x)的定義域為I,如果存在[a,b]⊆I,使函數(shù)f(x)在[a,b]上的值域為[ka,kb],k是正常數(shù),那么稱函數(shù)y=f(x),x∈I為閉函數(shù).
(Ⅰ)當k=$\frac{1}{2}$時,判斷函數(shù)f(x)=$\sqrt{x}$是否是閉函數(shù)?若是,則求出區(qū)間[a,b];
(Ⅱ)當k=$\frac{1}{2}$時.若函數(shù)f(x)=$\sqrt{x}$+t是閉函數(shù),求實數(shù)t的取值范圍;
(Ⅲ)當k=1時,是否存在實數(shù)m,當a+b≤2時,使函數(shù)f(x)=x2-2x+m是閉函數(shù)?若存在,求出實數(shù)m的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.當x=$\frac{π}{4}$時,函數(shù)f(x)=sin(x+φ)取得最小值,則函數(shù)y=f($\frac{3π}{4}$-x)的一個單調(diào)遞增區(qū)間是( 。
A.(0,$\frac{π}{2}$)B.($\frac{π}{2}$,π)C.(-$\frac{π}{2}$,-$\frac{π}{4}$)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的長軸為4,且過點$A(\sqrt{2},1)$
(1)求橢圓C的方程;
(2)設(shè)點O為原點,若點P在曲線C上,點Q在直線y=2上,且OP⊥OQ,試判斷直線PQ與圓x2+y2=2的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案