已知變量x,y,滿足
2x-y≤0
x-2y+3≥0
x≥0
,則z=log4(2x+y+4)的最大值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:先根據(jù)約束條件畫出可行域,欲求z=log4(2x+y+4)的最大值,即要求z1=2x+y+4的最大值,再利用幾何意義求最值,分析可得z1=2x+y+4表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最大值即可.
解答: 解:作
2x-y≤0
x-2y+3≥0
x≥0
的可行域如圖:
易知可行域為一個三角形,
驗證知在點A(1,2)時,
z1=2x+y+4取得最大值8,
∴z=log4(2x+y+4)最大是
3
2

故答案為:
3
2
點評:本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

2
+1與
2
-1兩數(shù)的等差中項是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=(
1
2
 x2-2x+1的單調增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=-
1
2
x2+bln(x+2)在(-
3
2
,+∞)上是減函數(shù),則實數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四棱錐的三視圖如圖所示,則此四棱錐的內切球半徑為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax2-2x-1,x≥0
x2+bx+c,x<0
是偶函數(shù),若方程f(x)-t=0有四個不同的實數(shù)解,則實數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三角形的兩個角分別為45°,60°,它們的夾邊長為1,則最小邊長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=log2x,則“a>b”是“f(a)>f(b)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖給出的是計算1+
1
3
+
1
5
+…+
1
2013
的值的一個程序框圖,則判斷框內應填人的條件是( 。
A、i≤1006
B、i>1006
C、i≤1007
D、i>1007

查看答案和解析>>

同步練習冊答案