設(shè)函數(shù)y=Asin(ωx+φ) (ω>0,φ∈(-
π
2
,
π
2
))
的最小正周期為π,且其圖象關(guān)于直線x=
π
12
對(duì)稱,則下面四個(gè)結(jié)論:
①圖象關(guān)于點(diǎn)(
π
4
,0)
對(duì)稱;     
②圖象關(guān)于點(diǎn)(
π
3
,0)
對(duì)稱;
③在[0,
π
12
]
上是增函數(shù);        
④在[-
π
12
,0]
上是減函數(shù);
正確結(jié)論的編號(hào)是
 
考點(diǎn):命題的真假判斷與應(yīng)用,正弦函數(shù)的對(duì)稱性
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)題意,先求出函數(shù)解析式,再判定函數(shù)的對(duì)稱性以及單調(diào)區(qū)間,從而得出正確的結(jié)論.
解答: 解:∵函數(shù)y=Asin(ωx+φ) (ω>0,φ∈(-
π
2
,
π
2
))
的最小正周期為π,
ω
=π,
∴ω=2;
又函數(shù)圖象關(guān)于直線x=
π
12
對(duì)稱,
∴2×
π
12
+φ=
π
2

∴φ=
π
3
;
∴y=Asin(2x+
π
3
);
∴當(dāng)x=
π
4
時(shí),y=Asin(2×
π
4
+
π
3
)=Asin
6
≠0;
∴結(jié)論①錯(cuò)誤;
當(dāng)x=
π
3
時(shí),y=Asin(2×
π
3
+
π
3
)=Asinπ=0,
∴結(jié)論②正確;
當(dāng)x∈[0,
π
12
]時(shí),2x+
π
3
∈[
π
3
π
2
],
∴y=Asin(2x+
π
3
)是增函數(shù);
∴結(jié)論③正確;
當(dāng)x∈[-
π
12
,0]時(shí),2x+
π
3
∈[
π
6
,
π
3
],
∴y=Asin(2x+
π
3
)是增函數(shù);
∴結(jié)論④錯(cuò)誤;
所以,以上正確的結(jié)論是②③;
故答案為:②③.
點(diǎn)評(píng):本題綜合考查了形如y=Asin(ωx+φ) (ω>0,φ∈(-
π
2
,
π
2
))
的函數(shù)的周期性,對(duì)稱性以及單調(diào)性問(wèn)題,其中求出函數(shù)解析式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過(guò)點(diǎn)(1,e)和(e,
3
2
),其中e為橢圓的離心率.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)Q(x0,y0)(x0y0≠0)為橢圓C上一點(diǎn),取點(diǎn)A(0,
2
),E(x0,0)
,連接AE,過(guò)點(diǎn)A作AE的垂線交x軸于點(diǎn)D.點(diǎn)G是點(diǎn)D關(guān)于原點(diǎn)的對(duì)稱點(diǎn),證明:直線QG與橢圓C只有一個(gè)公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足約束條件
1≤x≤2
2x-1≤y≤2x
,則
y
x
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列7個(gè)判斷:
①若f(x)=x2-2ax在[1,+∞)上增函數(shù),則a=1;②函數(shù)f(x)=2x-x2只有兩個(gè)零點(diǎn);
③函數(shù)y=ln(x2+1)的值域是R;④函數(shù)y=2|x|的最小值是1;⑤在同一坐標(biāo)系中函數(shù)y=2x與y=2-x的圖象關(guān)于y軸對(duì)稱;⑥設(shè)a>1,log0.2a、0.2aa0.2的大小關(guān)系為log0.2a<0.2aa0.2;⑦設(shè)偶函數(shù)f(x)的定義域?yàn)镽,當(dāng)x∈[0,+∞)時(shí),f(x)是增函數(shù),則f(-2),f(π),f(-3)的大小關(guān)為U=R;
其中正確的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的序號(hào)為
 

①函數(shù)y=ln(3-x)的定義域?yàn)椋?∞,3];
②定義在[a,b]上的偶函數(shù)f(x)=x2+(a+5)x+b最小值為5;
③若命題p:對(duì)?x∈R,都有x2-x+2≥0,則命題¬p:?x∈R,有x2-x+2<0;
④命題“函數(shù)f(x)在x=x0處有極值,則f′(x)=0”的逆命題是真命題.
⑤函數(shù)f(x)=lgx-
1
x
的零點(diǎn)所在的區(qū)間是(
1
10
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列命題:
①“若a<b<0,則a2>ab>b2
②命題“a、b都是偶數(shù),則a+b是偶數(shù)”的逆否命題是“a+b不是偶數(shù),則a、b都不是偶數(shù)”;
③若有命題p:7≥7,q:ln2>0,則p且q是真命題;
④命題:“若x2-x-2≠0,則x≠-1且x≠2”的否命題是若x2-x-2=0,則x=-1或x=2.其中真命題有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

x,y滿足
|x-y|≤1
4≤x+2y
,則
y
x+2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中正確的是( 。
A、“a=1”是直線“l(fā)1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的充要條件
B、命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x>0”
C、命題“若m>0,則方程x2+x-m=0有實(shí)數(shù)根”的逆否命題為:“若方程x2+x-m=0無(wú)實(shí)數(shù)根,則m≤0”
D、若p∧q為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“a≥0,b≥0”是“
a+b
2
ab
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案