16.如圖,橢圓C1:x2+$\frac{{y}^{2}}{^{2}}$=1(b>0)的左、右頂點(diǎn)分別為A,B,點(diǎn)P為雙曲線C2:x2-$\frac{{y}^{2}}{^{2}}$=1在第一象限內(nèi)的圖象上一點(diǎn),直線AP,BP與橢圓C1分別交于C,D兩點(diǎn).C是AP的中點(diǎn).
(1)求點(diǎn)P,C的橫坐標(biāo);
(2)若直線CD過橢圓C1的右焦點(diǎn),求橢圓C1的方程.

分析 (1)由題意可得A(-1,0),B(1,0),設(shè)P(m,n),代入雙曲線的方程,由中點(diǎn)坐標(biāo)公式以及橢圓方程,解方程可得P,C的橫坐標(biāo);
(2)求得橢圓的右焦點(diǎn)F坐標(biāo),求出直線PB的方程,代入橢圓方程,求得D的坐標(biāo),再由C,D,F(xiàn)共線,可得F的橫坐標(biāo)為$\frac{1}{2}$,可得b,進(jìn)而得到橢圓方程.

解答 解:(1)由題意可得A(-1,0),B(1,0),設(shè)P(m,n),
可得中點(diǎn)C的坐標(biāo)為($\frac{m-1}{2}$,$\frac{n}{2}$),
即有m2-$\frac{{n}^{2}}{^{2}}$=1,($\frac{m-1}{2}$)2+$\frac{{n}^{2}}{4^{2}}$=1,
解方程可得m=2(-1舍去),n=$\sqrt{3}$b,
即有P,C的橫坐標(biāo)為2和$\frac{1}{2}$;
(2)橢圓C1的右焦點(diǎn)為($\sqrt{1-^{2}}$,0),
直線PB的方程為y=$\sqrt{3}$b(x-1),
代入橢圓x2+$\frac{{y}^{2}}{^{2}}$=1(b>0)可得
2x2-3x+1=0,解得x=1或x=$\frac{1}{2}$,
即有D($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$b),
由直線CD過橢圓C1的右焦點(diǎn),
可得$\sqrt{1-^{2}}$=$\frac{1}{2}$,解得b2=$\frac{3}{4}$,
則橢圓方程為x2+$\frac{4{y}^{2}}{3}$=1.

點(diǎn)評(píng) 本題考查橢圓的方程和性質(zhì),以及雙曲線的方程的運(yùn)用,考查中點(diǎn)坐標(biāo)公式和直線方程的運(yùn)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)$y=\frac{1}{x+1}$的單調(diào)遞減區(qū)間為(-∞,-1)和(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)y=x+$\frac{a}{x}$有如下性質(zhì),如果常數(shù)a>0,那么該函數(shù)在(0,$\sqrt{a}$)上是減函數(shù),在($\sqrt{a}$,+∞)上的增函數(shù).
(1)試結(jié)合函數(shù)的性質(zhì)直接畫出函數(shù)y=x+$\frac{1}{x}$圖象的簡(jiǎn)圖(不必列表描點(diǎn));
(2)如果函數(shù)y=x+$\frac{{2}^}{x}$(x>0)在(0,4]上是減函數(shù),在[4,+∞)是增函數(shù),求b的值;
(3)設(shè)常數(shù)c∈(1,4),求函數(shù)f(x)=x+$\frac{c}{x}$(1≤x≤2)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,向量$\overrightarrow{m}$=(cosC,sin$\frac{C}{2}$),向量$\overrightarrow{n}$=(sin$\frac{C}{2}$,cosC),且$\overrightarrow{m}∥\overrightarrow{n}$.
(1)求角C的大小;
(2)若a2=2b2+c2,求tanA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若對(duì)任意的x∈[0,1],不等式1-ax≤$\frac{1}{\sqrt{x+1}}$≤1-bx恒成立,則a的最小值為$\frac{1}{2}$,b的最大值為1-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.等邊△ABC的邊長(zhǎng)為a,直線l過A且與AB垂直,將△ABC繞直線l旋轉(zhuǎn)一周所得到的幾何體的表面積是3πa2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知雙曲線的中心在原點(diǎn).焦點(diǎn)F1、F2在坐標(biāo)軸上,一條漸近線方程為y=x.且過點(diǎn)N(2$\sqrt{5}$,4).
(1)求雙曲線的方程;
(2)若點(diǎn)N在此雙曲線上,且∠F1NF2=60°,求△F1NF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.定義在R上的函數(shù)f(x)滿足f(x+6)=f(x),當(dāng)3≤x≤9時(shí),f(x)=3-|x-m|+n,f(6)=111,
(I)求m、n的值:
(Ⅱ)當(dāng)0≤x0≤6時(shí),求滿足f(x0)>$\frac{331}{3}$的實(shí)數(shù)x0的取值范圍:
(Ⅲ)比較f(log3m)與f(log3n)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,在△ABC中,∠B=45°,D是BC邊上一點(diǎn),AC=7,AD=5,DC=3,則AB的長(zhǎng)為( 。
A.$\frac{\sqrt{6}}{15}$B.5C.$\frac{5\sqrt{6}}{2}$D.5$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案