1.已知命題P:對(duì)m∈[-1,1],不等式a2-5a-3≥m+2恒成立;命題q:x2+ax+2<0有解,若P∧(¬q)為真,求實(shí)數(shù)a的取值范圍.

分析 先判斷p,q的真假,再求出p為真,q為假時(shí)的m的范圍,取交集即可.

解答 解:∵p∧(¬q)為真,
∴p為真命題,q為假命題                    …(2分)
由題設(shè)知,對(duì)于命題p,
∵m∈[-1,1],∴m+1∈[1,3].…(3分)
∵不等式a2-5a-3≥3恒成立,…(4分)
∴a2-5a-3≥3,解得a≥6或a≤-1.…(5分)
對(duì)于命題q,∵x2+ax+2<0有解,
∴△=a2-8>0,解得$a≤-2\sqrt{2}或a≥2\sqrt{2}$…7分,
q為假命題知$-2\sqrt{2}≤a≤2\sqrt{2}$.       …(8分)
∴a的取值范圍是:$-2\sqrt{2}≤a≤-1$.…(10分)

點(diǎn)評(píng) 本題考查了復(fù)合命題的判斷,考查函數(shù)恒成立問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知U=R,A={x|x2+px+12=0},B={x|x2-5x+q=0},若(∁UA)∩B={2},(∁UB)∩A={4},則A∪B=( 。
A.{2,3,4}B.{2.3}C.{2,4}D.{3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知點(diǎn)(-3,-1)在直線(xiàn)3x-2y-a=0的上方,則a的取值范圍為(  )
A.a>-7B.a≥-7C.a<-7D.a≤-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知命題p:π是有理數(shù),命題q:x2-3x+2<0的解集是(1,2).給出下列結(jié)論:
(1)命題p∧q是真命題         
(2)命題p∧(¬q)是假命題
(3)命題(¬p)∨q是真命題     
(4)命題(¬p)∨(¬q)是假命題
其中正確的是( 。
A.(1)(3)B.(2)(4)C.(2)(3)D.(1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.為了對(duì)某研究性課題進(jìn)行研究,用分層抽樣方法從某校高中各年級(jí)中,抽取若干名學(xué)生組成研究小組,有關(guān)數(shù)據(jù)見(jiàn)表(單位:人)     
(1)求x,y;
(2)若從高一、高二抽取的人中選2人作專(zhuān)題發(fā)言,求這2人都來(lái)自高一的概率.
年 級(jí)相關(guān)人數(shù)抽取人數(shù)
高一54x
高二362
高三18y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)$y=\frac{1}{x+1}$的單調(diào)遞減區(qū)間為(-∞,-1)和(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.若二次函數(shù)f(x)=x2+kx+2在[1,+∞)上是增函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.己知函數(shù)f(x)滿(mǎn)足f(1)=$\frac{1}{4}$,對(duì)任意x,y∈R都有4f(x)f(y)=f(x+y)+f(x-y),則f(2017)=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若對(duì)任意的x∈[0,1],不等式1-ax≤$\frac{1}{\sqrt{x+1}}$≤1-bx恒成立,則a的最小值為$\frac{1}{2}$,b的最大值為1-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案