cos70°•cos20°-sn70°•sin20°的值是( 。
A、0B、1
C、sin50°D、cos50°
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:利用兩角和的余弦函數(shù)公式化簡后即可得答案.
解答: 解:cos70°•cos20°-sn70°•sin20°=cos(70°+20°)=cos90°=0,
故選:A.
點評:本題主要考查了兩角和與差的余弦函數(shù)公式的應(yīng)用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若tan(2π+α)=-
1
2
,則
2sinαcosα
sin2α-cos2α
的值是(  )
A、
4
3
B、3
C、-
4
3
D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

類比三角形中的性質(zhì):
(1)兩邊之和大于第三邊;
(2)中位線長等于底邊的一半;
(3)三內(nèi)角平分線交于一點;
可得四面體的對應(yīng)性質(zhì):
(1)任意三個面的面積之和大于第四個面的面積;
(2)過四面體的交于同一頂點的三條棱的中點的平面面積等于第四個面面積的
1
4

(3)四面體的六個二面角的平分面交于一點.
其中類比推理結(jié)論正確的有( 。
A、(1)
B、(1)(2)
C、(1)(2)(3)
D、都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圖中的曲線是冪函數(shù)y=xn在第一象限的圖象,已知n可取±2,±
1
2
四個值,則對應(yīng)于曲線C1、C2、C3、C4的n依次為( 。
A、-2,-
1
2
1
2
,2
B、2,
1
2
,-
1
2
,-2
C、-
1
2
,-2,2,
1
2
D、2,
1
2
,-2,-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線
3
x+y-2
3
=0的傾斜角為(  )
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC,點D為BC中點.
(1)求二面角A-PD-B的余弦值;
(2)在直線AB上是否存在點M,使得PM與平面PAD;
所成角的正弦值為
1
6
,若存在,求出點M的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB=2,E、F分別為PC、PD的中點.
(1)求證:DE⊥平面PBC
(2)在棱BC上確定一點G,使得PA∥面EFG,并寫出證明過程
(3)在(2)成立的條件下,求二面角F-EG-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y>0,x+2y=10,求ω=x2+y2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=
1
4x+2
(x∈R).
(1)求:g(x)+g(1-x)的值;
(2)求:g(
1
m
)+g(
2
m
)+g(
3
m
)+…+g(
m-1
m
)+g(
m
m
)的值.
(3)設(shè)函數(shù)f(x)=-g(-log16x),a,b為常數(shù)且0<a<b,在下列四個不等關(guān)系中選出一個你認為正確的關(guān)系式,并加以說明.
①f(a)<f(
a+b
2
)<f(ab)        
②f(a)<f(b)<f(
ab

③f(
ab
)<f(
a+b
2
)<f(a)      
④f(b)<f(
a+b
2
)<f(
ab
).

查看答案和解析>>

同步練習冊答案