17.設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,已知3S2=a3-2,3S1=a2-2,則公比q=4.

分析 根據(jù)題意將3S2=a3-2和3S1=a2-2相減得3(S2-S1)=a3-a2,由此能求出公比.

解答 解:∵Sn為等比數(shù)列{an}的前n項(xiàng)和,3S2=a3-2,3S1=a2-2,
∴根據(jù)題意將3S2=a3-2和3S1=a2-2相減得:
3(S2-S1)=a3-a2,
則3a2=a3-a2,4a2=a3,
∴q=$\frac{a3}{a2}$=4.
故答案為:4.

點(diǎn)評 本題考查等比數(shù)列的公比的求法,是中檔題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.把函數(shù)$y=sin({x-\frac{π}{4}})$的圖象向右平移$\frac{π}{2}$個單位,得函數(shù)y=sin(x+θ)(0≤θ<2π)的圖象,則θ的值為$\frac{5π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某產(chǎn)品生產(chǎn)廠家生產(chǎn)一種產(chǎn)品,每生產(chǎn)這種產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為42萬元,且每生產(chǎn)1百臺的生產(chǎn)成本為15萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足$R(x)=\left\{\begin{array}{l}-6{x^2}+63x,0≤x≤5\\ 165,x>5\end{array}\right.$假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述規(guī)律,完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本);
(2)要使工廠有盈利,求產(chǎn)量x的范圍;
(3)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.兩條直線a1x+b1y+c1=0與a2x+b2y+c2=0垂直的充要條件是(  )
A.(-$\frac{{a}_{1}}{_{1}}$)(-$\frac{{a}_{2}}{_{2}}$)=-1B.(a1,b1)•(a2,b2)=0
C.-$\frac{{a}_{1}}{_{1}}$=$\frac{_{2}}{{a}_{2}}$D.a1b2=a2b1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.計(jì)算3${\;}^{-lo{g}_{3}2}$+lg$\frac{1}{2}$-lg5+2-1的結(jié)果為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.要得到函數(shù)y=sin(x-$\frac{π}{5}$)的圖象,只需將函數(shù)y=sinx的圖象( 。
A.向左平移$\frac{π}{10}$個單位B.向右平移$\frac{π}{5}$個單位
C.向左平移$\frac{π}{5}$個單位D.向右平移$\frac{π}{10}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.直線方程Ax+By=0,若從0,1,3,5,7,8這6個數(shù)字中每次取兩個不同的數(shù)作為A,B的值,則可表示22條不同的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.下列問題是排列問題嗎?說明理由.
(1)會場有50個座位,要求選出3個座位有多少種方法?若選出3個座位安排三位客人,又有多少種方法?
(2)從集合M={1,2,…,9}中,任取兩個元素作為a,b,可以得到多少個焦點(diǎn)在x軸上的橢圓方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1?可以得到多少個焦點(diǎn)在x軸上的雙曲線方程$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.5個不同的球放入4個不同的盒子中,每個盒子中至少有一個球,若甲球必須放入A盒,則不同的放法種數(shù)是60.

查看答案和解析>>

同步練習(xí)冊答案