4.設(shè)函數(shù)f(x)=$\sqrt{3}$cos2x+sinxcosx-$\frac{\sqrt{3}}{2}$.
(1)求函數(shù)f(x)的最小正周期T,并求出函數(shù)f(x)在區(qū)間上的單調(diào)遞增區(qū)間;
(2)求在[0,10π)內(nèi)使f(x)取到最大值的所有x的和.

分析 (1)根據(jù)三角函數(shù)的圖象和性質(zhì)即可求函數(shù)f(x)的最小正周期T,并求出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)根據(jù)三角函數(shù)的圖象和性質(zhì)即可求在[0,3π)內(nèi)使f(x)取到最大值的所有x的和.

解答 解:(1)∵f(x)=$\sqrt{3}$cos2x+sinxcosx-$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$(1+cos2x)+$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$=sin(2x+$\frac{π}{3}$).(3分)
∴最小正周期T=$\frac{2π}{2}=π$,(6分)
∴由2kπ$-\frac{π}{2}$≤2x+$\frac{π}{3}$≤2k$π+\frac{π}{2}$,k∈Z可解得單調(diào)遞增區(qū)間為:[k$π-\frac{5π}{12}$,kπ$+\frac{π}{12}$],k∈Z (9分)
(2)(2)f(x)=1即sin(2x+$\frac{π}{3}$)=1,則2x+$\frac{π}{3}$=2kπ+$\frac{π}{2}$
于是x=kπ+$\frac{π}{12}$(k∈Z)
∵0≤x<10π,
∴k=0,1,2,…9
∴在[0,10π)內(nèi)使f(x)取到最大值的所有x的和為45π+$\frac{5π}{6}$.(14分)

點評 本題主要考查三角函數(shù)的圖象和性質(zhì),要求熟練三角函數(shù)的單調(diào)性,周期,以及最值的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列結(jié)論正確的是( 。
A.若向量$\overrightarrow{a}$∥$\overrightarrow$,則存在唯一實數(shù)λ使$\overrightarrow{a}$=λ$\overrightarrow$
B.已知向量$\overrightarrow{a}$,$\overrightarrow$為非零向量,則“$\overrightarrow{a}$,$\overrightarrow$的夾角為鈍角”的充要條件是“$\overrightarrow{a}$•$\overrightarrow$<0”
C.若命題p:?x∈R,x2-x+1<0,則¬p:?x∈R,x2-x+1>0
D.“若θ=$\frac{π}{3}$,則cosθ=$\frac{1}{2}$”的否命題為“若θ≠$\frac{π}{3}$,則cosθ$≠\frac{1}{2}$”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線y=4x與曲線y=x3在第一象限內(nèi)圍成的封閉圖形的面積為(  )
A.4$\sqrt{2}$B.4C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與圓x2+y2-4x+2=0,有公共點,則該雙曲線離心率的取值范圍是( 。
A.(1,2]B.[$\sqrt{2}$,+∞)C.(1,$\sqrt{2}$]D.(1,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.給出30個數(shù):1,2,4,7,…,其規(guī)律是:第1個數(shù)是1,第2個數(shù)比第1個數(shù)大1,第3個數(shù)比第2個數(shù)大2,第4個數(shù)比第3個數(shù)大3,依此類推.要計算這30個數(shù)的和,現(xiàn)已給出了該問題算法的程序框圖(如圖所示),若要完成該題算法功能,則在圖中判斷框內(nèi)(1)處為:i>30,執(zhí)行框中的(2)處為p=p+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.用分析法證明$\sqrt{3}+\sqrt{5}$>$\sqrt{2}+\sqrt{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等比數(shù)列{an}是遞增數(shù)列,且a2a5=32,a3+a4=12,數(shù)列{bn}滿足b1=1,且bn+1=2bn+2an(n∈N*
(1)證明:數(shù)列{$\frac{_{n}}{{a}_{n}}$}是等差數(shù)列;
(2)若對任意n∈N*,不等式(n+2)bn+1≥λbn,總成立,求實數(shù)λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若直線a,b沒有公共點,則下列命題:
①存在于a,b平行的直線;
②存在與a,b垂直的平面;
③存在經(jīng)過a而與b垂直的平面;
④存在經(jīng)過a而與b平行的平面,
其中正確的命題序號是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若x<y與$\frac{1}{x}<\frac{1}{y}$同時成立,則( 。
A.x>0,y>0B.x>0,y<0C.x<0,y>0D.x<0,y<0

查看答案和解析>>

同步練習(xí)冊答案