分析 (I)由向量平行可得(2b-c)sinC=asin2C,解結(jié)合正弦定理和三角函數(shù)知識(shí)可得cosA=$\frac{1}{2}$,可得A=$\frac{π}{3}$;
(Ⅱ)可得C=$\frac{2π}{3}$-B,由正弦定理可得b+c=2$\sqrt{3}$sinB+2$\sqrt{3}$sinC,可化簡(jiǎn)為6sin(B+$\frac{π}{6}$),由0<B<$\frac{2π}{3}$和三角函數(shù)的值域可得.
解答 解:(I)∵$\overrightarrow{m}$=(2b-c,a),$\overrightarrow{n}$=(sin2C,sinC),且滿足$\overrightarrow{m}$∥$\overrightarrow{n}$,
∴(2b-c)sinC=asin2C,∴(2b-c)sinC=2asinCcosC,
∴2b-c=2acosC,∴2sinB-sinC=2sinAcosC,
∴2sin(A+C)-sinC=2sinAcosC,
∴2sinAcosC+2cosAsinC-sinC=2sinAcosC,
∴2cosAsinC=sinC,即cosA=$\frac{1}{2}$,
∴角A=$\frac{π}{3}$;
(Ⅱ)∵a=3,A=$\frac{π}{3}$,∴C=$\frac{2π}{3}$-B,
由正弦定理可得$\frac{3}{\frac{\sqrt{3}}{2}}$=$\frac{sinB}$=$\frac{c}{sinC}$,
∴b+c=2$\sqrt{3}$sinB+2$\sqrt{3}$sinC=2$\sqrt{3}$sinB+2$\sqrt{3}$sin($\frac{2π}{3}$-B)
=2$\sqrt{3}$sinB+2$\sqrt{3}$($\frac{\sqrt{3}}{2}$cosB+$\frac{1}{2}$sinB)
=2$\sqrt{3}$($\frac{\sqrt{3}}{2}$cosB+$\frac{3}{2}$sinB)
=6($\frac{1}{2}$cosB+$\frac{\sqrt{3}}{2}$sinB)
=6sin(B+$\frac{π}{6}$),
∵0<B<$\frac{2π}{3}$,∴$\frac{π}{6}$<B+$\frac{π}{6}$<$\frac{5π}{6}$,
∴$\frac{1}{2}$<sin(B+$\frac{π}{6}$)≤1,
∴3<6sin(B+$\frac{π}{6}$)≤6,
∴b+c的取值范圍為(3,6]
點(diǎn)評(píng) 本題考查解三角形,涉及向量平行和正弦定理以及三角函數(shù)的值域,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 91 5.5 | B. | 91 5 | C. | 92 5.5 | D. | 92 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=\frac{1}{x^2}$ | B. | f(x)=x2+1 | C. | f(x)=x3 | D. | f(x)=|x| |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com