15.如圖所示,已知直角梯形ABCO中,∠ABC=∠BCO=90°,AB=1,BC=$\sqrt{3}$,OA=OC=2,設(shè)$\overrightarrow{OM}$=m$\overrightarrow{OA}$,$\overrightarrow{ON}$=n$\overrightarrow{OC}$(其中0<m,n<1),G為線段MN的中點(diǎn).
(1)當(dāng)m=$\frac{1}{2}$時(shí),若O、G、B三點(diǎn)公線,求n的值;
(2)若△OMN的面積為$\frac{\sqrt{3}}{4}$,求|$\overrightarrow{OG}$|的最小值.

分析 (1)以O(shè)為坐標(biāo)原點(diǎn),OC所在直線為x軸,建立直角坐標(biāo)系,求得A,B,C,M,N,G的坐標(biāo),再由向量共線的坐標(biāo)表示,計(jì)算可得n的值;
(2)求得M,N,G的坐標(biāo),由三角形的面積公式,計(jì)算可得mn=$\frac{1}{4}$,計(jì)算OG的模,由配方,即可得到最小值

解答 解:(1)以O(shè)為坐標(biāo)原點(diǎn),OC所在直線為x軸,
建立直角坐標(biāo)系,可得O(0,0),A(1,$\sqrt{3}$),B(2,$\sqrt{3}$),
C(2,0),M($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),N(2n,0),G(n+$\frac{1}{4}$,$\frac{\sqrt{3}}{4}$),
由O,G,B三點(diǎn)共線,可得$\overrightarrow{OG}$∥$\overrightarrow{OB}$,
即有$\frac{\sqrt{3}}{4}$×2=$\sqrt{3}$(n+$\frac{1}{4}$),
解得n=$\frac{1}{4}$;
(2)由$\overrightarrow{OM}$=m$\overrightarrow{OA}$,$\overrightarrow{ON}$=n$\overrightarrow{OC}$,可得M(m,$\sqrt{3}$m),N(2n,0),
可得G(n+$\frac{1}{2}$m,$\frac{\sqrt{3}}{2}$m),
由△OMN的面積為$\frac{\sqrt{3}}{4}$,可得$\frac{1}{2}$×2n×$\sqrt{3}$m=$\frac{\sqrt{3}}{4}$,
即有mn=$\frac{1}{4}$,
則|$\overrightarrow{OG}$|=$\sqrt{(n+\frac{1}{2}m)^{2}+\frac{3}{4}{m}^{2}}$=$\sqrt{{n}^{2}+{m}^{2}+mn}$
=$\sqrt{(m-n)^{2}+3mn}$=$\sqrt{(m-n)^{2}+\frac{3}{4}}$,
當(dāng)m=n=$\frac{1}{2}$時(shí),|$\overrightarrow{OG}$|取得最小值,且為$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題考查向量的坐標(biāo)運(yùn)算,考查向量共線的坐標(biāo)表示,向量的模的最值,考查三角形的面積公式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)y=logax(a>0,a≠1)在x∈[2,4]上的最大值比最小值多1,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若1og23=a,5b=2,試用a,b表示log245=$2a+\frac{1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖所示,陰影部分表示的角的集合為(含邊界){α|kπ≤α≤kπ+$\frac{π}{3}$,k∈Z}(用弧度表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{bx+c}{x+1}$的圖象過(guò)原點(diǎn)和點(diǎn)P(2,$\frac{2}{3}$).
(1)求f(x)的解析式;
(2)判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求下列函數(shù)的定義域:
(1)y=$\sqrt{{7}^{x}-1}$;
(2)y=$\frac{1}{{4}^{x}-1}$;
(3)y=$\sqrt{(\frac{1}{2})^{x}-1}$;
(4)y=$\frac{\sqrt{x}}{x-2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知sin($\frac{π}{6}$-a)=$\frac{3}{5}$,則sin($\frac{π}{6}$+2a)=$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.當(dāng)x>-3時(shí),不等式a≤x+$\frac{2}{x+3}$恒成立,則a的取值范圍是2$\sqrt{2}$-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1-cosα}\\{y=sinα}\end{array}\right.$(α位參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立的極坐標(biāo)系中,曲線C2的方程為ρ=2sinθ.
(1)求C1和C2的普通方程;
(2)求C1和C2公共弦的垂直平分線的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案