10.已知函數(shù)f(x)=$\frac{bx+c}{x+1}$的圖象過(guò)原點(diǎn)和點(diǎn)P(2,$\frac{2}{3}$).
(1)求f(x)的解析式;
(2)判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性,并用定義證明.

分析 (1)根據(jù)條件,建立方程關(guān)系即可得到結(jié)論.
(2)根據(jù)函數(shù)單調(diào)性的定義進(jìn)行證明即可.

解答 解:(1)∵函數(shù)f(x)=$\frac{bx+c}{x+1}$的圖象過(guò)原點(diǎn),
∴f(0)=0,則c=0,
則f(x)=$\frac{bx}{x+1}$,
∵函數(shù)過(guò)點(diǎn)P(2,$\frac{2}{3}$).
∴f(2)=$\frac{2b}{2+1}=\frac{2b}{3}$=$\frac{2}{3}$,
則b=1,
即f(x)=$\frac{x}{x+1}$.
(2)函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)遞增,
設(shè)0<x1<x2,
∵f(x)=$\frac{x}{x+1}$=$\frac{x+1-1}{x+1}$=1-$\frac{1}{x+1}$,
∴f(x1)-f(x2)=1-$\frac{1}{{x}_{1}+1}$-1+$\frac{1}{{x}_{2}+1}$=$\frac{1}{{x}_{2}+1}$-$\frac{1}{{x}_{1}+1}$=$\frac{{x}_{1}-{x}_{2}}{({x}_{1}+1)({x}_{2}+1)}$,
∵0<x1<x2,
∴x1-x2<0,x1+1>0,x2+1>0,
則f(x1)-f(x2)=$\frac{{x}_{1}-{x}_{2}}{({x}_{1}+1)({x}_{2}+1)}$<0,
即f(x1)<f(x2),
即函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)遞增.

點(diǎn)評(píng) 本題主要考查函數(shù)解析式的求解以及函數(shù)單調(diào)性的應(yīng)用,利用定義法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.過(guò)橢圓一個(gè)焦點(diǎn)F的直線與橢圓交于兩點(diǎn)P、Q,A1、A2為橢圓長(zhǎng)軸上的頂點(diǎn),A1P和A2Q交于點(diǎn)M,A2P和A1Q交于點(diǎn)N,則MF⊥NF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)f(x)=$lo{g}_{{2}_{\;}}$(-x2+2x+3)的單調(diào)遞增區(qū)間是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知A={x|x2-2x≤0},B={x|x2+ax-1≤0},若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.計(jì)算3lg5•2lg3=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,已知直角梯形ABCO中,∠ABC=∠BCO=90°,AB=1,BC=$\sqrt{3}$,OA=OC=2,設(shè)$\overrightarrow{OM}$=m$\overrightarrow{OA}$,$\overrightarrow{ON}$=n$\overrightarrow{OC}$(其中0<m,n<1),G為線段MN的中點(diǎn).
(1)當(dāng)m=$\frac{1}{2}$時(shí),若O、G、B三點(diǎn)公線,求n的值;
(2)若△OMN的面積為$\frac{\sqrt{3}}{4}$,求|$\overrightarrow{OG}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=1-$\frac{2}{1{0}^{x}+1}$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求f(x)的值域;
(3)用定義證明f(x)在(-∞,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.終邊在第二象限的角的集合可以表示為( 。
A.{α|90°<α<180°}
B.{α|90°+k•180°<α<180°+k•180°,k∈Z}
C.{α|-270°+k•180°<α<-180°+k•180°,k∈Z}
D.{α|-270°+k•360°<α<-180°+k•360°,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,矩形ABCD中,AB=3,AD=2,一質(zhì)點(diǎn)從AB邊上的點(diǎn)P0出發(fā),沿與AB的夾角為θ的方向射到邊BC上點(diǎn)P1后,依次反射(入射角與反射角相等)到邊CD,DA和AB上的P2,P3,P4處.
(1)若P4與P0重合,求tanθ的值;
(2)若P4落在A、P0兩點(diǎn)之間,且AP0=2,設(shè)tanθ=t.
(i)求tanθ的取值范圍;
(ii)將五邊形P0P1P2P3P4的面積S表示為t的函數(shù),并求S的最大值.
(參考結(jié)論:函數(shù)g(x)=x+$\frac{a}{x}$,(a>0),x>0,則函數(shù)g(x)在(0,$\sqrt{a}$]上是減函數(shù),在[$\sqrt{a}$,+∞)是增函數(shù).)

查看答案和解析>>

同步練習(xí)冊(cè)答案