5.已知函數(shù)y=logax(a>0,a≠1)在x∈[2,4]上的最大值比最小值多1,求實(shí)數(shù)a的值.

分析 分a>1和0<a<1進(jìn)行討論,利用函數(shù)的單調(diào)性求出最大值和最小值,列出方程即可求出a的值.

解答 解:(1)當(dāng)a>1時(shí),y=logax在[2,4]上是增函數(shù),
ymax=loga4,ymin=loga2,
∴l(xiāng)oga4-loga2=1
即loga2=1,
∴a=2.
(2)當(dāng)0<a<1時(shí),y=logax在[2,4]上是減函數(shù),
ymax=loga2,ymin=loga4
∴l(xiāng)oga2-loga4=1
即loga$\frac{1}{2}$=1,
∴a=$\frac{1}{2}$.
綜上所述:a=2或a=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)的單調(diào)性和分情況討論思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知向量$\vec a$與向量$\vec b$夾角為$\frac{π}{6}$,且$|\vec a|=\sqrt{3}$,$\vec a⊥(\vec a-2\vec b)$,則$|\vec b|$=( 。
A.$\sqrt{3}$B.$2\sqrt{3}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知角α的終邊經(jīng)過(guò)點(diǎn)$(-1,\sqrt{3})$,則對(duì)函數(shù)f(x)=sinαcos2x+cosαcos(2x-$\frac{π}{2}$)的表述正確的是( 。
A.對(duì)稱中心為($\frac{11}{12}π$,0)
B.函數(shù)y=sin2x向左平移$\frac{π}{3}$個(gè)單位可得到f(x)
C.f(x)在區(qū)間$(-\frac{π}{3},\frac{π}{6})$上遞增
D.方程f(x)=0在$[{-\frac{5}{6}π,0}]$上有三個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.若橢圓的長(zhǎng)軸與短軸之比為2,它的右焦點(diǎn)是(2$\sqrt{15}$,0)求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.過(guò)橢圓一個(gè)焦點(diǎn)F的直線與橢圓交于兩點(diǎn)P、Q,A1、A2為橢圓長(zhǎng)軸上的頂點(diǎn),A1P和A2Q交于點(diǎn)M,A2P和A1Q交于點(diǎn)N,則MF⊥NF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{\sqrt{1-{x}^{2}}}{|x+2|-2}$.
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知a>0,b>0且ab=1,則函數(shù)f(x)=ax-1與g(x)=logbx的圖象可能是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.?dāng)?shù)列{an}共有六項(xiàng),其中四項(xiàng)是1,其余兩項(xiàng)各不相同,則滿足上述條件的數(shù)列{an}共有( 。
A.30個(gè)B.31個(gè)C.60個(gè)D.61個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,已知直角梯形ABCO中,∠ABC=∠BCO=90°,AB=1,BC=$\sqrt{3}$,OA=OC=2,設(shè)$\overrightarrow{OM}$=m$\overrightarrow{OA}$,$\overrightarrow{ON}$=n$\overrightarrow{OC}$(其中0<m,n<1),G為線段MN的中點(diǎn).
(1)當(dāng)m=$\frac{1}{2}$時(shí),若O、G、B三點(diǎn)公線,求n的值;
(2)若△OMN的面積為$\frac{\sqrt{3}}{4}$,求|$\overrightarrow{OG}$|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案