11.已知集合M={1,2,3},N={2,3},則(  )
A.M=NB.M∩N=∅C.M⊆ND.N?M

分析 利用子集的定義,即可得出結(jié)論.

解答 解:∵集合M={1,2,3},N={2,3},
∴N?M,
故選:D.

點(diǎn)評(píng) 本題主要考查集合關(guān)系的應(yīng)用,正確理解子集的含義是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知中心在原點(diǎn)的橢圓與雙曲線(xiàn)有公共焦點(diǎn),左、右焦點(diǎn)分別為F1、F2,且兩條曲線(xiàn)在第一象限的交點(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線(xiàn)的離心率分別為e1、e2,則e1•e2+1的取值范圍為( 。
A.(1,+∞)B.($\frac{4}{3}$,+∞)C.($\frac{6}{5}$,+∞)D.($\frac{10}{9}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)函數(shù)y=x2與y=$(\frac{1}{2})^{x-2}$的圖象交點(diǎn)為(x0,y0),則x0所在區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)g(x)=Asin(ωx+φ)+B(A>0,ω>0),滿(mǎn)足:當(dāng)x1,x2∈R時(shí),有|g(x1)-g(x2)|≤$\frac{1}{4}$,當(dāng)相位為$\frac{π}{6}$時(shí),g(x)的值為$\frac{7}{16}$.
(1)當(dāng)g(x)的周期為π,初相為$\frac{π}{3}$,且g(x)≥$\frac{1}{2}$時(shí),求x的范圍;
(2)若f(x)=ax-$\frac{3}{2}$x2的最大值不大于$\frac{1}{6}$,且f(g(x))≥$\frac{1}{8}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(1)用輾轉(zhuǎn)相除法求840與1764的最大公約數(shù).
(2)用更相減損術(shù)求561與255的最大公約數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知A={x|x2+5x-6=0},B={x|mx+1=0},且A∩B=B,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn=n2-2n-1,求這個(gè)數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.直線(xiàn)l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若l在兩坐標(biāo)軸上的截距相等,求a的值;
(2)若l不經(jīng)過(guò)第二象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=x2+bx+4滿(mǎn)足f(1+x)=f(1-x),且函數(shù)y=f(3x)-m在x∈[-1,2]上有零點(diǎn),則實(shí)數(shù)m的取值范圍為[$\frac{31}{9}$,11].

查看答案和解析>>

同步練習(xí)冊(cè)答案