A. | [-1,1] | B. | (-∞,1] | C. | [0,3] | D. | (-∞,1]∪[3,+∞) |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域令u=x+y,分別討論k的取值范圍,結(jié)合目標(biāo)函數(shù)的幾何意義進(jìn)行求解即可.
解答 解:令u=x+y,則y=-x+u.當(dāng)-1≤k<2時(shí)(如圖1),
將y=2x與y=kx+1的交點(diǎn)$({\frac{1}{2-k},\frac{2}{2-k}})$,代入y=-x+u得${z_{max}}={u_{max}}=\frac{1}{2-k}+\frac{2}{2-k}=\frac{3}{2-k}≤3$,
即k≤1,
所以-1≤k≤1;
當(dāng)k<-1時(shí)(如圖2),zmax=umax=1,滿足題意;
當(dāng)k≥2時(shí)(如圖3),區(qū)域?yàn)椴环忾]區(qū)域,不存在最大值.故k的取值范圍是(-∞,1].
故選:B
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)的幾何意義,討論k的取值范圍,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com