分析 (1)利用正弦函數(shù)的對稱性可得$-\frac{ωπ}{3}+\frac{π}{6}=kπ,k∈Z$,結(jié)合范圍0<ω<1,解得ω,從而可求f(x)解析式,令2kπ-$\frac{π}{2}$<x+$\frac{π}{6}$<2kπ+$\frac{π}{2}$,k∈Z,即可解得函數(shù)的增區(qū)間.
(2)用五點(diǎn)法即可作出函數(shù)在區(qū)間[-π,π]上的圖象.
解答 解:(1)∵點(diǎn)$(-\frac{π}{6},0)$是函數(shù)f(x)圖象的一個(gè)對稱中心,
∴$-\frac{ωπ}{3}+\frac{π}{6}=kπ,k∈Z$,
∴$ω=-3k+\frac{1}{2}$,
∵0<ω<1,
∴當(dāng)k=0時(shí),可得:$ω=\frac{1}{2}$.
∴f(x)=2sin(x+$\frac{π}{6}$),令2kπ-$\frac{π}{2}$<x+$\frac{π}{6}$<2kπ+$\frac{π}{2}$,k∈Z,解得:2kπ-$\frac{2π}{3}$<x<2kπ+$\frac{π}{3}$,k∈Z,
∴函數(shù)的增區(qū)間為$(2kπ-\frac{2π}{3},2kπ+\frac{π}{3})k∈Z$.
(2)由(1)知,$f(x)=2sin(x+\frac{π}{6})$,x∈[-π,π],
列表如下:
x+$\frac{π}{6}$ | -$\frac{5π}{6}$ | -$\frac{π}{2}$ | 0 | $\frac{π}{2}$ | π | $\frac{7π}{6}$ |
x | -π | -$\frac{2π}{3}$ | -$\frac{π}{6}$ | $\frac{π}{3}$ | $\frac{5π}{6}$ | π |
y | -1 | 0 | 1 | 2 | 0 | 0 |
點(diǎn)評 本題主要考查正弦函數(shù)的圖象和性質(zhì)的應(yīng)用,考查用五點(diǎn)法作出函數(shù)y=Asin(ωx+∅)在一個(gè)周期上的簡圖,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{11}{3}$ | C. | $\frac{29}{9}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | d<0且a1<0 | B. | d>0且a1<0 | C. | d<0且a2<0 | D. | d>0且a1<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{3}$或$\frac{1}{5}$ | D. | $\frac{1}{3}$或$\frac{1}{5}$或0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com