19.(-$\frac{7}{8}$)0+($\frac{1}{8}$)${\;}^{-\frac{1}{3}}$+3${\;}^{lo{g}_{3}2}$=5.

分析 根據(jù)指數(shù)冪的運(yùn)算性質(zhì)和對數(shù)的運(yùn)算計(jì)算即可.

解答 解:(-$\frac{7}{8}$)0+($\frac{1}{8}$)${\;}^{-\frac{1}{3}}$+3${\;}^{lo{g}_{3}2}$=1+$({2}^{-3})^{-\frac{1}{3}}$+2=1+2+2=5,
故答案為:5.

點(diǎn)評 本題考查了指數(shù)冪的運(yùn)算性質(zhì)和對數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_2}x}&{x>0}\\{{{log}_2}(1-x)}&{x≤0}\end{array}}\right.$,且對任意x∈R,x≠0,f(ax)<f(x)恒成立,則實(shí)數(shù)a的取值范圍是0<a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}(a-2)x,(x≤2)\\{2^x}-1,(x>2)\end{array}\right.$是R上的單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.(2,+∞)B.(-∞,$\frac{7}{2}$]C.(2,$\frac{7}{2}$)D.(2,$\frac{7}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.二次函數(shù)y=x2-4x+5的對稱軸方程是x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax2+(b-1)x+b+1,x∈[a,b]是偶函數(shù).
(1)求a,b的值;
(2)在區(qū)間[-1,1]上,y=f(x)的圖象恒在直線y=2x+m的圖象上方,試確定實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.函數(shù)y=2x-${log}_{\frac{1}{2}}$(x+1)在區(qū)間[1,3]上的最大值和最小值之和為13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某產(chǎn)品廣告費(fèi)x(千元)與銷售額y(萬元)之間有如圖對應(yīng)數(shù)據(jù):
x24568
y34657
(1)求銷售額y關(guān)于廣告費(fèi)x的線性回歸方程$\widehat{y}$=bx+a;
(2)當(dāng)廣告費(fèi)支出1萬元時(shí),預(yù)測銷售額為多少萬元?
(參考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過點(diǎn)(-a-6,3),(2a,3a)的直線與過點(diǎn)點(diǎn)(2,1),(3,1)的直線垂直,則實(shí)數(shù)a的值是( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.點(diǎn)A(-3,6)關(guān)于點(diǎn)P(2,-1)對稱點(diǎn)的點(diǎn)的坐標(biāo)是(  )
A.(1,-4)B.(1,4)C.(-7,8)D.(7,-8)

查看答案和解析>>

同步練習(xí)冊答案