17.某次實(shí)驗(yàn)中測得(x,y)的四組數(shù)值如圖所示,若根據(jù)該表的回歸方程$\widehaty$=-5x+126.5,則m的值為( 。
x16171819
y5034m31
A.39B.40C.41D.42

分析 求出$\overline{x},\overline{y}$代入回歸方程解出m.

解答 解:$\overline{x}$=$\frac{16+17+18+19}{4}$=17.5,$\overline{y}$=$\frac{50+34+m+31}{4}$=$\frac{115+m}{4}$,
∴$\frac{115+m}{4}$=-5×17.5+126.5,解得m=41.
故選C.

點(diǎn)評(píng) 本題考查了線性回歸方程與數(shù)據(jù)的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知兩條直線l1:y=a和l2:y=$\frac{18}{2a+1}$(其中a>0),若直線l1與函數(shù)y=|log4x|的圖象從左到右相交于點(diǎn)A,B,直線l2與函數(shù)y=|log4x|的圖象從左到右相交于點(diǎn)C,D.記線段AC和BD在x軸上的投影長度分別為 m,n.令f(a)=log4$\frac{n}{m}$.
(1)求f(a)的表達(dá)式;
(2)當(dāng)a變化時(shí),求出f(a)的最小值,并指出取得最小值時(shí)對(duì)應(yīng)的a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知圓${O_1}:{x^2}+{({y-1})^2}=4$,圓${O_2}:{x^2}+{y^2}-2x+4y-4=0$,則圓O1和圓O2的位置關(guān)系是( 。
A.相交B.相離C.外切D.內(nèi)含

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合$A=\left\{{\left.x\right|\frac{1}{x}>1}\right\},B=\left\{{\left.x\right|y=\sqrt{{2^x}-16}}\right\}$,則A∩(∁RB)等于(  )
A.(-∞,1)B.(0,4)C.(0,1)D.(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知A(x0,0),B(0,y0)兩點(diǎn)分別在x軸和y軸上運(yùn)動(dòng),且|AB|=1,若動(dòng)點(diǎn)P(x,y)滿足$\overrightarrow{OP}=2\overrightarrow{OA}+\sqrt{3}\overrightarrow{OB}$.
(I)求出動(dòng)點(diǎn)P的軌跡對(duì)應(yīng)曲線C的標(biāo)準(zhǔn)方程;
(Ⅱ)一條縱截距為2的直線l1與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過原點(diǎn),求出直線方程;
(Ⅲ)直線l2:x=ty+1與曲線C交于A、B兩點(diǎn),E(1,0),試問:當(dāng)t變化時(shí),是否存在一直線l2,使△ABE的面積為$2\sqrt{3}$?若存在,求出直線l2的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若圓的方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),直線的方程為$\left\{\begin{array}{l}{x=t+1}\\{y=t-1}\end{array}\right.$(t為參數(shù)),則直線與圓的位置關(guān)系是( 。
A.相離B.相交C.相切D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知圓C1:x2+y2+2x+8y-8=0與圓C2:(x-2)2+(y-2)2=10相交于A,B兩點(diǎn),則弦長|AB|=( 。
A.10B.$\sqrt{5}$C.2$\sqrt{5}$D.4$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列關(guān)系式中正確的是( 。
A.0∈∅B.0∉{x|x<1}C.{0}=∅D.{0}⊆{x|x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y-2≥0}\\{x+y-6≤0}\\{x-3y-2≤0}\end{array}\right.$,若目標(biāo)函數(shù)z=x+ay取得最小值的最優(yōu)解有無數(shù)個(gè),則$\frac{y}{x-a}$的最大值是$\frac{2}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案