分析 (1)設(shè)等差數(shù)列{an}的公差為d,從而可得$\left\{{\begin{array}{l}{{a_1}+5d=-3}\\{6{a_1}+15d=-3}\end{array}}\right.$,從而求an,再由等比數(shù)列的通項(xiàng)公式求bn;
(2)化簡(jiǎn)${c_n}={2^{3-n}}=\frac{8}{2^n}$,從而可得數(shù)列{cn}是首項(xiàng)為4,公比為$\frac{1}{2}$的等比數(shù)列,從而求前n項(xiàng)和.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
則$\left\{{\begin{array}{l}{{a_1}+5d=-3}\\{6{a_1}+15d=-3}\end{array}}\right.$,
解得,$\left\{{\begin{array}{l}{{a_1}=2}\\{d=-1}\end{array}}\right.$;
∴an=2-(n-1)=3-n;
∵bn+1=2bn,
∴數(shù)列{bn}是公比為2的等比數(shù)列,
∵b2+b4=2b1+8b1=20,
∴b1=2,
∴${b_n}=2•{2^{n-1}}={2^n}$;
(2)∵${c_n}={2^{3-n}}=\frac{8}{2^n}$,
∴$\frac{{{c_{n+1}}}}{c_n}=\frac{1}{2}$,
∴數(shù)列{cn}是首項(xiàng)為4,公比為$\frac{1}{2}$的等比數(shù)列,
∴${T_n}=\frac{{4(1-(\frac{1}{2}{)^n})}}{{1-\frac{1}{2}}}=8(1-{2^{-n}})$.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的應(yīng)用及通項(xiàng)公式與前n項(xiàng)和公式的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-4,-3) | B. | (4,3) | C. | (-4,3) | D. | (3,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | c>b>a | C. | a>c>b | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0∉N | B. | $0•\overrightarrow{AB}=0$ | C. | cos0.75°>cos0.7 | D. | lge>(lge)2>lg$\sqrt{e}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x≥1} | B. | {x|x>1} | C. | {x|0<x<1} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x-2y-1=0 | B. | x-2y+1=0 | C. | 2x+y-2=0 | D. | x+2y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com