分析 如圖所示,連接CE,BD,相交于點(diǎn)O1,過點(diǎn)O1作OO1⊥平面BCDE.設(shè)等邊三角形ABC的中心為O2點(diǎn),過O2點(diǎn)作OO2⊥平面ABC,點(diǎn)O為OO2與OO1的交點(diǎn),則點(diǎn)O為四棱錐A-BCDE外接球的球心.利用正方形與等邊三角形的有關(guān)知識(shí)即可得出四棱錐A-BCDE外接球的半徑R,再利用球的表面積計(jì)算公式即可得出.
解答 解:如圖所示,
連接CE,BD,相交于點(diǎn)O1,過點(diǎn)O1作OO1⊥平面BCDE.
設(shè)等邊三角形ABC的中心為O2點(diǎn),過O2點(diǎn)作OO2⊥平面ABC,點(diǎn)O為OO2與OO1的交點(diǎn),
則點(diǎn)O為四棱錐A-BCDE外接球的球心.
∵底面是邊長為4的正方形,∴O1E=2$\sqrt{2}$.
由△ABC是邊長為4的等邊三角形,可得OO1=$\frac{2\sqrt{3}}{3}$.
∴四棱錐A-BCDE外接球的半徑R=$\sqrt{(\frac{2\sqrt{3}}{3})^{2}+(2\sqrt{2})^{2}}$=$\sqrt{\frac{28}{3}}$.
∴四棱錐A-BCDE外接球的表面積=4πR2=$\frac{112π}{3}$.
故答案為:$\frac{112π}{3}$.
點(diǎn)評(píng) 本題考查了線面由于面面垂直的性質(zhì)、正方形與等邊三角形的性質(zhì)、勾股定理、球的表面積計(jì)算公式,考查了空間想象能力,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
評(píng)分 | 低于65分 | 65分到85分 | 高于85分 |
評(píng)價(jià)等級(jí) | 差 | 正常 | 優(yōu) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 500($\sqrt{3}$+1)m | B. | 500m | C. | 500($\sqrt{2}$+1)m | D. | 1000m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{π}{8}$ | B. | 0 | C. | $\frac{π}{8}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com