1.將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結(jié)論:
(1)AC⊥BD           (2)AB與平面BCD成60°的角
(3)△ACD是等邊三角形 (4)AB與CD所成的角為60°
正確結(jié)論的編號是①③④.

分析BD的中點E,則AEBD,CEBD.?從而得到BDAC;AB與平面BCD成45°的角;設(shè)正方形邊長為a,則AD=DC=a,AE=$\frac{\sqrt{2}}{2}$a=EC.從而AC=a;以E為坐標原點,EC、EDEA分別為x,yz軸建立直角坐標系,利用向量法得到AB與CD所成的角為60°.

解答 解:在①中:取BD的中點E,則AEBDCEBD.?
BD⊥面AEC,BDAC,故①正確;
在②中:∵AE⊥平面BCD,∠ABDAB與面BCD所成的角,
∵AE=BE,∴∠ABD=45°,∴AB與平面BCD成45°的角,故②不正確;
在③中:設(shè)正方形邊長為a
AD=DC=a,AE=$\frac{\sqrt{2}}{2}$a=EC.∴AC=a.?
∴△ACD為等邊三角形,故③正確;?
 在④中:以E為坐標原點,ECED、EA分別為xy,z軸,建立空間直角坐標系,?
A(0,0,$\frac{\sqrt{2}}{2}$a),B(0,-$\frac{\sqrt{2}}{2}$a,0),D(0,$\frac{\sqrt{2}}{2}$a,0),C($\frac{\sqrt{2}}{2}$a,0,0).??
$\overrightarrow{AB}$=(0,-$\frac{\sqrt{2}}{2}$a,-$\frac{\sqrt{2}}{2}$a),$\overrightarrow{DC}$=($\frac{\sqrt{2}}{2}$a,-$\frac{\sqrt{2}}{2}$a,0).
cos<$\overrightarrow{AB}$,$\overrightarrow{DC}$>=$\frac{\frac{1}{2}a}{a×a}$=$\frac{1}{2}$.?
∴<$\overrightarrow{AB}$,$\overrightarrow{DC}$>=60°,∴AB與CD所成的角為60°,故④正確.
∴真命題為①③④.?

點評 本題考查命題真假的判斷,是中檔題,解題時要認真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知圓C的圓心在直線2x-7y+8=0上,且過點A(6,0),B(1,5),直線l的傾斜角為135°,解答下列問題
(1)若直線l的橫截距為3,求直線l的方程;
(2)求圓C的一般方程;
(3)判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.求證:${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+…+(n+1)${C}_{n}^{n}$=2n+n•2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.方程(lga+lgx)•(lga+2lgx)=4有兩個小于1的正根α,β.
(1)若lgα+lgβ=-$\frac{9}{2}$,求a的值;
(2)若|lgα-lgβ|≤2$\sqrt{3}$,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知四棱錐A-BCDE的底面是邊長為4的正方形,面ABC⊥底面BCDE,且AB=AC=4,則四棱錐A-BCDE外接球的表面積為$\frac{112π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知四棱錐P-ABCD中,AD=2BC,且AD∥BC,點M,N分別是PB,PD中點,平面MNC交PA于Q.
(1)證明:NC∥平面PAB
(2)試確定Q點的位置,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)極坐標的極點是直角坐標系的原點,極軸是x軸的正半軸,取相同的單位長度,已知直線1的參數(shù)方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),且α≠kπ+$\frac{π}{2}$,k∈z),圓C的極坐標方程為p=2$\sqrt{2}$cos(θ+$\frac{π}{4}$),且圓C與直線l不相交.
(I)求直線l的普通方程;
(Ⅱ)設(shè)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=a}\\{y=-\frac{2}{\sqrt{a}}}\end{array}\right.$ (a為參數(shù)),點P在曲線C1上.求點P到直線1距離的最小值及取得最小值時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知sin($\frac{π}{4}$-α)=$\frac{\sqrt{2}}{3}$,則sin2α的值為( 。
A.$\frac{7}{9}$B.$\frac{5}{9}$C.$\frac{1}{3}$D.-$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=log2x+ax+2.
(1)當a=0時,求函數(shù)f(x)的零點;
(2)當a=1時,判斷函數(shù)f(x)在定義域內(nèi)的零點的個數(shù)并給出代數(shù)證明.

查看答案和解析>>

同步練習冊答案