4.函數(shù)y=log2x,x∈(0,16]的值域是(-∞,4].

分析 運(yùn)用對(duì)數(shù)函數(shù)的單調(diào)性和對(duì)數(shù)的運(yùn)算性質(zhì),計(jì)算即可得到所求值域.

解答 解:函數(shù)y=log2x,x∈(0,16]為遞增函數(shù),
即有y≤log216=4,
則值域?yàn)椋?∞,4].
故答案為:(-∞,4].

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性的運(yùn)用,主要考查對(duì)數(shù)函數(shù)的單調(diào)性及運(yùn)用,同時(shí)考查對(duì)數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}中,a1=-60,an+1=an+3,求數(shù)列{|an|}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$(其中m為整數(shù)),則稱m為離實(shí)數(shù)x最近的整數(shù),記作[x],即[x]=m.
(1)若-$\frac{1}{2}$<x≤$\frac{1}{2}$,則f(x)=x-[x]的值域是$({-\frac{1}{2},\frac{1}{2}}]$;
(2)設(shè)集合A={(x,y)|y=f(x)=x-[x],x∈R},B={(x,y)|y=g(x)=kx-1,x∈R},若集合A∩B的子集恰有4個(gè),則實(shí)數(shù)k的取值范圍是$[{-3,-\frac{3}{5}})$或$({\frac{3}{11},\frac{3}{7}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知三棱柱的各側(cè)面均垂直于底面,底面為正三角形,且側(cè)棱長(zhǎng)與底面邊長(zhǎng)之比為2:1,頂點(diǎn)都在一個(gè)球面上,若該球的表面積為$\frac{16}{3}$π,則此三棱柱的側(cè)面積為(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)M是焦距為2的橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點(diǎn),A,B是其左右頂點(diǎn),直線MA與MB的斜率分別為k1,k2,且k1k2=-$\frac{1}{2}$.
(1)求橢圓E的方程;
(2)已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上點(diǎn)N(x0,y0)處切線方程為$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{^{2}}$=1,若與與橢圓E相切與(x1,y1),D(x2,y2)兩點(diǎn)的切線相交于P點(diǎn),且$\overrightarrow{PC}$•$\overrightarrow{PD}$=0,求證點(diǎn)P到原點(diǎn)距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a1=a2015=1,且|an+1|=|an+1|(n∈N*),則a1+a2+…+a2015=(  )
A.2015B.2016C.-1006D.-1007

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在一塊邊長(zhǎng)為20米的正方形地中有一個(gè)面積為225平方米的不規(guī)則池塘,向正方形地中隨機(jī)扔一塊石頭,石頭掉進(jìn)池塘概率$\frac{9}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=2x-4sinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)點(diǎn)P是函數(shù)y=x+$\frac{4}{x}$(x>0)的圖象上任意一點(diǎn),過(guò)點(diǎn)P分別向直線y=x和y軸作垂線,垂足分別為A,B,則$\overrightarrow{PA}•\overrightarrow{PB}$=-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案