分析 由三棱錐Q-BMN的俯視圖可得Q在D1,N在C,所以三棱錐Q-BMN正視圖為△D1EC(E為D1D的中點(diǎn)),即可求出三棱錐Q-BMN正視圖的面積.
解答 解:由三棱錐Q-BMN的俯視圖可得Q在D1,N在C,
所以三棱錐Q-BMN正視圖為△D1EC(E為D1D的中點(diǎn)),
其面積為$\frac{1}{2}×\frac{a}{2}×a$=$\frac{1}{4}{a}^{2}$.
故答案為:$\frac{1}{4}{a}^{2}$.
點(diǎn)評(píng) 本題考查三棱錐Q-BMN正視圖的面積,考查學(xué)生的計(jì)算能力,確定三棱錐Q-BMN正視圖為△D1EC是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16 | B. | 5 | C. | $\sqrt{41}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-$\frac{9}{4}$) | B. | (-∞,-$\frac{9}{4}$] | C. | [-$\frac{9}{4}$,+∞) | D. | [0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1+\sqrt{5}}{2}$,+∞) | B. | (1,1+$\sqrt{3}$) | C. | ($\frac{1+\sqrt{5}}{2}$,1+$\sqrt{3}$) | D. | ($\frac{1+\sqrt{5}}{2}$,2)∪(2,1+$\sqrt{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |x-a|≤3a | B. | |x-a|<3a | C. | |x-a|<0.03a | D. | |x-a|≤0.03a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-5)∪[-4,+∞) | B. | (-5,-4] | C. | (-∞,-4] | D. | [-4,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com